Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0934-0866
    Keywords: Chemistry ; Industrial Chemistry and Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A model for the direct problem of calculating the forward scattering signature of a multiple scattering medium is presented. The new formulation is optimized for integration into schemes for reconstructing the particle size distribution from laser diffraction (forward scattering) signatures obtained from optically thick media. The analysis is valid for media where the particle sizes and interparticle spacings are large (relative to the wavelength and the particle size, respectively) such that Fraunhofer diffraction theory adequately describes the properties of the forward scattered light from individual scattering events. The simulated performance of laser diffraction particle sizing instruments was then studied using predictions of the scattered light signatures which would be measured by laser diffraction instrument under multiple scattering conditions. The results were compared with experimental data and theoretical calculations based on other models.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0934-0866
    Keywords: Chemistry ; Industrial Chemistry and Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Solution of the linear system of equations obtained by discretization and numerical quadrature of the Fredholm integral equation describing Fraunhofer diffraction by a distribution of particles is considered. The condition of the resulting system of equations depends on the discretization strategy. However, the specific set of equations is shown to depend on the discretization scheme used for the scattering angle domain (the number, positions and apertures of the detectors) and for the size domain (the number and extent of the discrete size classes). The term scaling is used here to describe particular formulations or configurations of the scattering angles and size classes, and a method for optimally scaling the systems is presented. Optimality is determined using several measures of the condition (stability) of the resulting system of linear equations. The results provide design rules for specifying an optimal photodetector configuration of a Fraunhofer diffraction particle sizing instrument.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Particle and Particle Systems Characterization 11 (1994), S. 194-199 
    ISSN: 0934-0866
    Keywords: Chemistry ; Industrial Chemistry and Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Forward light scattering is a well established technique for measuring particle size distributions. The light intensity fluctuations which can be observed in the diffraction plane of the instrument can be used to stabilize the inversion process [1]. Particle shape information is also present in these fluctuations. It is shown that an azimuthal-type of detector can be used to extract this information from the statistical correlations of the detector signals.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Particle and Particle Systems Characterization 13 (1996), S. 59-67 
    ISSN: 0934-0866
    Keywords: Chemistry ; Industrial Chemistry and Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The ability to routinely make simultaneous measurements of the size and velocity of individual spherical particles is identified as a crucial component of advances in the science and technology of multiphase systems and processes. Since it is the dual beam interferometer identified here as the phase-Doppler particle-sizing velocimeter (PD) that has provided this capability, and since 1995 marks twenty years from a seminal paper by Durst and Zaré, a historical review is warranted and is presented. The roots and context of the development of PD are traced from the days of laser Doppler velocimetry (LDV) in the early 1970's through work culminating at several laboratories in the mid 1980's. A number of important contributions and the engineers and scientists responsible for those contributions are recognized.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...