Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 55-65 
    ISSN: 0006-3592
    Keywords: crystalline bacterial cell surface layers ; S-layers ; Protein A ; affinity cross-flow filtration ; IgG purification ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In this article, we describe the use of 1- to 2-μm sized affinity microparticles for the isolation and purification of IgG from artificial IgG-human serum albumin mixtures and clarified hybridoma cell culture supernatants by affinity cross-flow filtration. Affinity microparticles were prepared from cell wall fragments of Clostridium thermohydrosulfuricum L111-69, in which the peptidoglycan-containing layer was completely covered with a hexagonally ordered S-layer lattice. After crosslinking the S-layer protein with glutaraldehyde, carboxyl groups from acidic amino acids were activated with carbodiimide and used for immobilization of Protein. A. Quantitative determination confirmed that Protein A molecules formed a monomolecular layer on the outermost surface of the S-layer lattice. Affinity microparticles were found to withstand high centrifugal and shear forces and revealed no Protein A leakage or S-layer protein release under cross-flow conditions between pH 2 to 12. The IgG-binding capacity of affinity microparticles was investigated under crossflow conditions and compared with that obtained in batch adsorption processes. © 1994 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 21 (1985), S. 1157-1164 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: In problems of structure interaction with infinite surrounding of incompressible, inviscid fluid media, added mass matrices on wet surfaces have been considered for modelling the effects of outgoing waves. For an arbitrary geometry of the wet surface, an expression for the added mass matrix is derived according to a finite element procedure which utilizes the force-displacement relations of representative elements on the boundary. In the element mass matrix a certain symmetry, which characterizes interactions between the interior and exterior surfaces, helps reduce the quadratic matrix equation of the cloning algorithm to a linear eigenvalue problem. A benchmark example is included to establish the numerical accuracy of the proposed formulation.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...