Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    FEBS Letters 247 (1989), S. 1-8 
    ISSN: 0014-5793
    Keywords: (Streptomyces albus) ; Amino acid sequence ; Enzyme crystallization ; Glucose isomerase ; X-ray analysis
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 51 (1995), S. 73-85 
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: The structure of trypsin from the fungus Fusarium oxysporum has been refined at 1.55 Å resolution by restrained least-squares minimization to an R-factor of 14.4%. The data were recorded from a single-crystal on the X31 beamline at EMBL, Hamburg, using a locally developed image-plate scanner. The final model consists of 1557 protein atoms, 400 water molecules, one molecule of isopropanol and one monoisopropyl phosphoryl inhibitor group covalently bound to the catalytic Ser195. Comparison of the structure with bovine trypsin reveals significant differences in the active site and suggests a possible explanation for the difference in substrate specificity between the two enzymes. In F. oxysporum trypsin the specificity pocket is larger than in bovine trypsin. This explains the preference of F. oxysporum trypsin for the bulkier arginine over lysine and the reverse preference in bovine trypsin. The binding cavity on the C-terminal side of the substrate is more restricted in F. oxysporum trypsin than in mammalian and Streptomyces griseus trypsins, which explains the relative inactivity of F. oxysporum trypsin towards peptide–pNA substrate analogues as an unfavourable steric interaction between the side of the binding cavity and the para-nitroanilino group of peptide–pNA. The observed restriction of the binding cavity does not lead to a reduced catalytic activity compared to other trypsins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...