Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 11484-11487 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Using a femtosecond pump-probe technique, the fundamental mechanical radial mode of silver nanoparticles is coherently excited and probed via its interaction with the electron gas. The mechanical oscillations are launched by an indirect displacive process and are detected via the induced modulation of the surface plasmon resonance frequency. The measured fundamental radial mode period and damping time are found to be proportional to the nanoparticle radius in the range of 3–15 nm, in agreement with theoretical predictions. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 71 (1997), S. 75-77 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ultrafast heating of cold holes is investigated in bulk GaAs using a high-sensitivity two-color absorption saturation technique. Measurements performed as a function of the lattice temperature and of the carrier excess energy show that absorption of optical phonons is the main hole heating mechanism for the investigated temperatures in the range 100–300 K. Using a numerical model for carrier dynamics, the optical deformation potential is estimated to be d0∼40 eV. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 68 (1999), S. 433-437 
    ISSN: 1432-0649
    Keywords: PACS: 78.47.+p; 42.65.-k; 73.20.Mf
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1434-6079
    Keywords: PACS. 36.40.-c Atomic and molecular clusters – 61.46.+w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals – 71.45.Gm Exchange, correlation, dielectric and magnetic response functions, plasmons – 78.47.+p Time-resolved optical spectroscopies and other ultrafast optical measurements in condensed matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: The effects of surface-induced lattice contraction on the size evolution of the surface plasmon resonance and of the electronic thermalization time in small silver clusters have been investigated in the framework of a mixed classical/quantum model. The increase of the conduction-electron density results in a blue-shift trend for decreasing cluster size. However this effect is counterbalanced by the increase of the dielectric function associated to the ionic-core background. Agreement with the blue-shift trend observed in experiment is recovered by introducing an inner surface skin of vanishing ionic-core polarizability having a thickness practically unchanged as compared to previous estimations. The influence of the lattice contraction on the electron dynamics is also discussed. It is shown that this influence is negligible as compared to the surface effects arising from the spillout and the inner skin of reduced ionic-core polarizability which are both responsible for a decrease of the electron thermalization time as the particle size decreases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...