Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 40 (1994), S. 312-320 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A statistical thermodynamics model based on the original work of van der Waals and Platteeuw is presented for structure-H hydrates. The model is an extension of the hydrate prediction method generalized by Parrish and Prausnitz for structure-I and-II hydrates. Four structure-H-forming systems, methane+ adamantane, methane+ neohexane, methane+isopentane, and methane+methylcyclohexane, were considered. Optimized Kihara core parameters are presented for each of the large hydrocarbon guest molecules. The optimized reference chemical potential difference and reference enthalpy difference for structure-H hydrates are also presented. The results show good agreement with the experimentally determined phase-equilibria conditions. A sensitivity analysis is presented for the parameters in the model, and their relative order of influence on the accurate evaluation of the quilibrium pressure is determined.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 34 (1988), S. 1468-1476 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The objective of this study was to determine the heat capacity and heat of dissociation of methane hydrates. A technique has been devised which circumvents the two major problems encountered in measuring gas hydrate heat capacity: the need to impose a mechanical pressure during the measurement and the need to have an absolutely pure hydrate sample. The technique was shown to be successful utilizing high-pressure, constant-volume cells in a differential scanning calorimeter.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...