Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 273 (1978), S. 530-532 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Fig. 1 Absorption and emission of N2O by waterlogged soils. Soils (30 g) were covered with water to a depth of 1 cm in 150-ml conical flasks. Flasks were flushed with ambient air at times indicated by arrows. Other experimental conditions were as described in Table 1. Note the break in the scale; ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Irrigation science 8 (1987), S. 131-149 
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary We examine the notion that scalars are transported along their mean concentration gradients in the air space of the canopy. Recent observations and theory indicate that this concept is both inappropriate and misleading. Independent measurements of the fluxes and gradients of heat, water vapour and CO2 in a forest canopy show that counter-gradient fluxes are common. The intermittency of the transport processes and their large scale are seen as important reasons for this. Eddy-correlation and/or ecological techniques seem to be the only viable alternatives for measuring flux densities and source-sink strengths at present, but the logistical problems are formidable. For modelling exchange processes at leaf surfaces, hence source-sink distributions, analyses based on the gradient-diffusion concept may not be too much in error in as much as they employ essentially correct descriptions of transfer across leaf boundary-layers, if not in the canopy air space. An empirical description of transport in the latter may suffice. The utility of alternative models of scalar transport based on the nature of canopy turbulence is examined. Second-order closure models appear to have great pedagogic value in identifying the existence and relative importance of mechanisms for the production, transport and dissipation of scalar fluxes, but they are of limited use for prediction. Lagrangian models, though, appear to predict dispersion and profile development very well, provided the source distribution is known. However, the inverse problem of inferring source distributions from the concentration profiles remains a challenge.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 23 (1982), S. 209-222 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Flux densities of carbon dioxide were measured over an arid, vegetation-free surface by eddy covariance techniques and by a heat budget-profile method, in which CO2 concentration gradients were specified in terms of mixing ratios. This method showed negligible fluxes of CO2, consistent with the bareness of the experimental site, whereas the eddy covariance measurements indicated large downward fluxes of CO2. These apparently conflicting observations are in quantitative agreement with the results of a recent theory which predicts that whenever there are vertical fluxes of sensible or latent heat, a mean vertical velocity is developed. This velocity causes a mean vertical convective mass flux (= ρ cw for CO2, in standard notation). The eddy covariance technique neglects this mean convective flux and measures only the turbulent flux ρ′ c w′. Thus, when the net flux of CO2 is zero, the eddy covariance method indicates an apparent flux which is equal and opposite to the mean convective flux, i.e., ρ′ c w′ = −ρ c w. Corrections for the mean convective flux are particularly significant for CO2 because ρ cw and ρ′ c w′ are often of similar magnitude. The correct measurement of the net CO2 flux by eddy covariance techniques requires that the fluxes of sensible and latent heat be measured as well.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Turbulence data for the International Turbulence Comparison Experiment (ITCE) held at Conargo, N.S.W. (35° 18′ S., 145° 10′ E.) during October, 1976 are analysed. The standard deviation % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiqado% hagaqbamaaCaaaleqabaGaaGOmaaaakiaacMcadaahaaWcbeqaaiaa% igdacaGGVaGaaGOmaaaaaaa!3B93!\[(s'^2 )^{1/2} \] and covariance % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG3bGbauaaceWGZbGbauaaaaaaaa!3809!\[\overline {w's'} \] measured by a number of instruments and instrument arrays have been compared to assess their field performance and calibration accuracy. Satisfactory agreement, i.e. typically 5% for % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikamaana% aabaGabm4CayaafaWaaWbaaSqabeaacaaIYaaaaaaakiaacMcadaah% aaWcbeqaaiaaigdacaGGVaGaaGOmaaaaaaa!3BA4!\[(\overline {s'^2 } )^{1/2} \] (except in humidity) and of the order of 20% for % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiqado% hagaqbamaaCaaaleqabaGaaGOmaaaakiaacMcadaahaaWcbeqaaiaa% igdacaGGVaGaaGOmaaaaaaa!3B93!\[(s'^2 )^{1/2} \], was achieved, but only after consideration of: (1) Instrumental response at high frequencies. (2) Flow distortion induced by instruments and supporting structures. (3) Spatial separation of instruments used for covariance measurements. (4) Statistical errors associated with single point measurements over a finite averaging time, and with lateral separation of two sensor arrays being compared.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 6 (1988), S. 133-147 
    ISSN: 1573-0662
    Keywords: Ammonia loss ; energy balance ; micrometeorology ; water-air transfer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Vertical flux densities of ammonia, water vapour and sensible heat were measured over a flooded rice field in China following the application of ammonium bicarbonate fertilizer. Aqueous and gaseous phase transfer resistances for ammonia were deduced from these measurements. The aqueous phase resistance was maximal in the morning and least in the afternoon. Stable stratification of the floodwater immediately adjacent to the air-water interface was observed during the morning when evaporation rates were low, and may be responsible for inhibiting the transfer of ammonia to the atmosphere.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-0867
    Keywords: Nitrogen loss ; volatilization ; micrometeorology ; fertilizer efficiency ; evaporation ; urea hydrolysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Ammonia losses following surface applications of urea to trash covered sugar cane fields were investigated in four climatic zones of tropical Queensland. Volatilization of ammonia and evaporation of water were determined by micrometeorological techniques. The results showed that the pattern, rate and extent of ammonia loss were controlled by the availability of water in the trash and its evaporation. Water added by dewfall, rainfall or condensation of evaporated soil moisture dissolved some of the urea and allowed it to be hydrolyzed to ammonia by the urease enzyme in the sugarcane residues; when the water evaporated, ammonia was lost to the atmosphere. In the dry climatic zone, where no rain or dew fell, water addition to the trash by condensation of evaporated soil moisture was not sufficient to dissolve much urea so very little ammonia was lost. In the cool and warm moist zones, small additions of water to the trash from dew, light rain and condensation maintained a slow but steady pattern of ammonia loss over a period of six weeks and resulted in losses of 32% and 39% of the applied nitrogen. At the site in the wet zone, heavy rainfall apparently washed the urea from the trash layer into the soil and limited ammonia loss to 17% of the applied nitrogen. Substitution of ammonium sulfate for urea reduced ammonia loss to less than 1.8% of the applied nitrogen.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-1472
    Keywords: Mass balance ; Flux-gradient ; Boundary-layer budgeting ; Enteric fermentation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The paper examines the strengths and weaknesses of a rangeof meteorological flux measurement techniques that mightbe used to verify predictions of greenhouse gas inventories.Recent research into emissions of methane (CH4)produced by enteric fermentation in grazing cattle and sheepis used to illustrate various methodologies. Quantifying thisimportant source presents special difficulties because the animalsconstitute moving, heterogeneously distributed, intermittent, pointsources. There are two general approaches: one, from the bottom up,involves direct measurements of emissions from a known number ofanimals, and the other, from the top down, infers areal emissions ofCH4 from its atmospheric signature. A mass-balance methodproved successful for bottom-up verification. It permits undisturbedgrazing, has a simple theoretical basis and is appropriate for fluxmeasurements on small plots and where there are scattered pointsources. The top-down methodologies include conventional flux-gradientapproaches and convective and nocturnal boundary-layer (CBL and NBL)budgeting schemes. Particular attention is given to CBL budget methods inboth differential and integral form. All top-down methodologies require ideal weather conditions for their application, and they suffer from the scattered nature of the source, varying wind directions and low instrument resolution. As for mass-balance, flux-gradient micrometeorological measurements were in good agreement with inventory predictions of CH4 production by livestock, but the standard errors associated with both methods were too large to permit detection of changes of a few per cent in emission rate, which might be important for inventory, regulatory or research purposes. Fluxes calculated by CBL and NBL methods were of the same order of magnitude as inventory predictions, but more improvement is needed before their use can be endorsed. Opportunities for improving the precision of both bottom-up and top-down methodologies are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-0867
    Keywords: direct-seeding ; nitrogen fertilizer ; micrometeorology ; gas exchange ; irrigation ; volatilization ; denitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Ammonia loss from urea applied to dry-seeded rice, determined using a micrometeorological technique, varied considerably depending on the time of application. Ammonia volatilization was negligible, before and after flooding, when urea was applied to the dry soil surface two days before permanent flood. Before flooding, the urea prills remained undissolved and urea hydrolysis could not proceed. Thus there was no source of fertilizerderived ammonia for volatilization to occur. Upon flooding, the urea prills were washed into cracks in the soil which subsequently closed. Therefore the movement of soluble nitrogen into the floodwater was prevented, and again there was no ammonia source for the volatilization process. When urea was broadcast into the floodwater a few days after permanent flood, ammonia losses were high and varied from 11–21% of the nitrogen applied. These losses were associated with high floodwater pHs and high wind speeds near the water surface. However, when urea was applied into the floodwater at panicle initiation, ammonia losses were low (3–8% of the applied nitrogen). At this stage of growth the plant canopy shaded the floodwater, inhibiting algal photosynthesis and consequent pH elevation, thus resulting in low ammonia gas concentrations at the floodwater surface. In addition, the plant canopy restricted air movement at the water surface, thereby reducing ammonia transport away from the air-water interface. These findings provide basic information required for improving current fertilizer management practices.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 16 (1988), S. 97-107 
    ISSN: 1573-0867
    Keywords: nitrogen loss ; volatilization ; micrometeorology ; denitrification ; gas exchange ; lowland rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This paper reports a study on the effects of water depth in modifying rates of ammonia emission and total nitrogen loss from flooded rice fields after fertilization with urea. Ammonia loss was determined by the mass balance micrometeorological method and total nitrogen loss by15N balance. Initially ammonia was lost at a faster rate from the shallow (0.05 m) than from the deep (0.14 m) floodwater; this was due to higher ammoniacal nitrogen concentrations and higher temperatures in the shallow water. Emission rates were more nearly comparable later in the experiment, but overall, 26% of the applied nitrogen was lost as ammonia from the shallow pond and only 18% from the deep pond. Even though changes in water depth markedly affected ammonia emission rates and the amounts of ammonia lost, they did not significantly affect total nitrogen loss. The results suggest that management practices based only on changes in water depth may not result in increased efficiency of fertilizer nitrogen for flooded rice.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Plant ecology 91 (1991), S. 73-86 
    ISSN: 1573-5052
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The paper is concerned mainly with nitrous oxide, methane and carbon dioxide, which account for more than 70% of predicted greenhouse warming. All three have significant sources in the soil-plant environment and principal sinks in the atmosphere or the oceans. The emphasis is on methodological problems associated with measuring source and sink strengths, but the biogeochemistry of individual gases and problems of scaling to longer times and larger areas are addressed also. Nitrous oxide accounts for some 6% of predicted greenhouse warming. Its atmospheric concentration is 315 ppbv and is increasing at 0.25% per year. The principal sink appears to be destruction through photochemical processes in the stratosphere. The main causes of the N2O increase are thought to be biomass burning, fossil fuel combustion processes, and what now seem to be substantial emissions from soils associated with increased nitrogen inputs, irrigation and tropical land clearing. Uncertainty about the strengths of the soil sources is due largely to our reliance on enclosure techniques for flux measurement, and the lack of appropriate scaling procedures. Methane now accounts for 18% of anticipated greenhouse warming. Its atmospheric concentration is 1.7 ppmv and is increasing at 1% per year. Its greenhouse effect seems likely to increase over the next 50 years. The biggest sink appears to be oxidation in the atmosphere, but some oxidation occurs in soils as well. The main sources are rice fields, wetlands, biomass burning, ruminants, land fills, natural gas production, and coal mining. As for N2O, there is much uncertainty about individual source strengths and there are urgent needs for better measurement and scaling techniques. Increased CO2 concentrations account for 49% of the greenhouse effect. The present atmospheric CO2 concentration is 350 ppmv, increasing at 0.4% per year. Over 80% of the increase is due to fossil fuels, and the rest to deforestation and biomass burning. Atmospheric fluxes of CO2 can be measured much more precisely than those of N2O and CH4, by micrometeorological techniques, but the scaling problem still remains. The largest known sink for CO2 is the oceans, but recent calculations point to a large ‘missing’ sink for CO2, which may be as yet unidentified sequestering processes in terrestrial ecosystems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...