Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract. Aerobic biodegradation of a xenobiotic recalcitrant compound sodium anthraquinone-2-sulphonate (SAS), was investigated using as an inoculum a mixed microbial culture, which was activated sludge from industrial and domestic waste-water treatment plants. The difference in SAS degradation was examined using two main systems: (1) suspended cells and (2) immobilized cells, both in batch and in continuous culture. In the suspended cell system, under continuous culture conditions using SAS as a unique source of carbon and energy, it was possible to degrade about 95% of this substrate after 6 days. Maximal SAS removal rates in the suspended-cell system were 59.3 mg SAS l−1 h−1 and 88.7 mg SAS l−1 h−1 for dilution rates (D) of 0.05 h−1 and 0.075 h−1, respectively. In the immobilized-cell system, almost all SAS was degraded in 6 days and the maximal removal rate reached 88.7 mg SAS l−1 h−1 at D=0.05 h−1. Application of a continuous-flow enrichment procedure resulted in selection of several kinds of micro-organisms and led to a progressive elimination of some species of Aeromonas. A stable microbial community of 11 strains has been established and characterized at D=0.075 h−1. Most of them were Gram-negative and belonged to the genus Pseudomonas.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Aerobic biodegradation of a xenobiotic recalcitrant compound sodium anthraquinone-2-sulphonate (SAS), was investigated using as an inoculum a mixed microbial culture, which was activated sludge from industrial and domestic waste-water treatment plants. The difference in SAS degradation was examined using two main systems: (1) suspended cells and (2) immobilized cells, both in batch and in continuous culture. In the suspended cell system, under continuous culture conditions using SAS as a unique source of carbon and energy, it was possible to degrade about 95% of this substrate after 6 days. Maximal SAS removal rates in the suspended-cell system were 593 mg SAS l−1 h−1 and 88.7 mg SAS l−1 h−1 for dilution rates (D) of 0.05 h−1 and 0.075 h−1, respectively. In the immobilized-cell system, almost all SAS was degraded in 6 days and the maximal removal rate reached 88.7 mg SAS l−1 h−1 at D=0.05 h−1. Application of a continuous-flow enrichment procedure resulted in selection of several kinds of micro-organisms and led to a progressive elimination of some species of Aeromonas. A stable microbial community of 11 strains has been established and characterized at D=0.075 h−1. Most of them were Gram-negative and belonged to the genus Pseudomonas.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Chemical Engineering & Technology - CET 19 (1996), S. 405-409 
    ISSN: 0930-7516
    Keywords: Chemistry ; Industrial Chemistry and Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A dynamic model incorporating biomass growth and liquid hold-up evolution is developed to describe a fixed bed bioreactor operation with cocurrent upflow of water and air flows. The model permits to predict cycle time and optimal operation conditions for high substrate removal and long cycle times. Simulation results are compared with published experimental results and show good model accuracy.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 97-104 
    ISSN: 0006-3592
    Keywords: fixed-bed bioreactor ; pressure drop ; biofilm growth monitoring ; Biofor ; friction factor ; Reynolds number ; wastewater treatment ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The possibility of following the biomass growth by pressure drop measurement was investigated in an aerated cocurrent upflow fixed-bed bioreactor continuously fed with wastewater containing industrial organic pollutants. The experiments were carried out in a biological filtration oxygenated reactor (Biofor) pilot plant packed with expanded clay balls (Biolite) of 2.7-mm diameter, which served as biomass carriers. The column was equipped for on-line pressure drop measurements. Correlation between pressure drop measurements and Reynolds numbers of air and water were determined in experiments carried out without biomass. Under operating conditions with biomass, it was demonstrated that column clogging and the operating time between washing cycles can be predicted depending on the volumetric organic load for a given total organic carbon inlet concentration. The biological activity of the fixed biomass was estimated from the oxygen consumption rate per unit time and carrier area. The oxygen consumption rate measurements demonstrated that the biological activity depends on the inlet substrate concentration, and that the Biofor column was most efficient between 75 and 100 g m-3 of total organic carbon inlet concentration. In the course of the wastewater treatment, using pressure drop measurements, the equivalent diameter of the Biolite particles, the reduced column macroporosity, and the biofilm thickness were calculated. An expression correlating biofilm density and biofilm thickness, as determined from the pressure drop measurements, was proposed. Good agreement was found between the fixed biomass in the reactor, determined as volatile suspended solids, and the biologically active biomass, estimated by respirometry. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 97-104, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Journal of Chemical Technology AND Biotechnology 71 (1998), S. 84-88 
    ISSN: 0268-2575
    Keywords: biofilm ; industrial wastewater ; segmented column ; biokinetic parameters ; mass transfer ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: This study describes a technique for estimating biokinetic and mass transfer parameters for biofilm processes in wastewater treatment. The reactor used consisted of a column divided into separate units packed with expanded clay pellets. Samples were taken at the exit of each unit. Oxygen mass transfer and oxygen consumption rate were determined. The system was operated with cocurrent upflows of air and industrial wastewater. A mathematical approach was developed to estimate biokinetic parameters such as the maximal oxygen removal rate, saturation constant and internal diffusion coefficient. © 1998 SCI.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...