Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 117 (2002), S. 2299-2306 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The NO/NiO(100) system represents an excellent test case for the theory of surface chemical bond since accurate information about geometry, adsorption strength, and spin properties is available from experiments performed on NiO and Ni-doped MgO powders, single crystals, and thin films. We used cluster models to describe the NO/NiO interaction in combination with density functional theory (DFT) and wave function-based methods. We have identified four major aspects of the interaction: (1) the bonding cannot be described by a single determinant; (2) a spin-polarized DF-B3LYP approach gives reasonable adsorption properties at the price of a physically incorrect spin distribution; (3) a key ingredient of the interaction is the Coulomb repulsion within the Ni 3d shell; since this term is described very differently depending on the exchange-correlation functional it can result in overbound generalized gradient approach or Becke, Lee, Yang, and Parr or in strongly unbound (HFLYP) systems depending on the DFT approach; (4) the proper inclusion of the dynamical correlation is essential to treat the on-site Coulomb repulsion within the Ni 3d shell and to provide an accurate bond strength. In fact, the explicitly correlated complete-active-space second-order perturbation theory method gives results in overall agreement with the experiment. This shows the importance of treating on the same footing spin and electron correlation as well as the multiconfiguration character of the wave function. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Berichte der deutschen chemischen Gesellschaft 1999 (1999), S. 2135-2145 
    ISSN: 1434-1948
    Keywords: Density functional calculations ; Epoxidation ; Peroxo complexes ; Titanium ; Transition states ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Epoxidation of olefins by TiIV peroxo and hydroperoxo (alkylperoxo) complexes was investigated using a hybrid DFT method (B3LYP). Reaction energies and activation barriers for direct oxygen transfer to ethylene as a model olefin were computed for various model complexes to compare the epoxidation activity of Ti(η2-O2) and TiOOR (R = H, CH3) moieties. The activity of complexes with a Ti(O2) peroxo group is shown to be essentially quenched when the coordination sphere of the complex is saturated by strongly basic (σ-donor) ligands. In contrast, the activity of a TiOOH functional group depends only weakly on the saturation of the coordination sphere of the Ti center. Substitution of methyl for hydrogen in a TiOOH group is found to slightly increase the activation barrier of epoxidation. The computational results give preference to reaction paths that involve TiOOR species. The factors governing the activity of Ti(O2) and TiOOR groups, in particular the effects of donor ligands, are discussed on the basis of a molecular orbital analysis.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...