Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 108 (1998), S. 2903-2911 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The problem of resonant vibration–vibration (V–V) energy transfer in liquids is explored within a simple model in order to compare two calculational methods. Two bromine diatomics are constrained to move between two fixed argon solvent atoms in one dimension. The time-dependent probability for the transfer of a vibrational excitation between the bromine diatomics is computed semiclassically. The results of single-trajectory molecular dynamics methods are compared with those of multiple-trajectory surface hopping methods. It is found that the two methods give similar results, indicating that the simpler single-trajectory method adequately describes the resonant V to V transfer process. The proximity of the nearly degenerate potential energy surfaces leads to a phase coherence time that exceeds the time required for the transition probability to saturate for this model. As a result, the transition probability remains a nonlinear function of time, and this precludes the extraction of a rate constant from the slope of the resonant V–V transition probability curve for this simple one-dimensional model. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...