Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 65 (1994), S. 115-117 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: GaInO3 is recently identified transparent conducting material which is structurally and chemically distinct from indium tin oxide [R. J. Cava, J. M. Phillips, J. Kwo, G. A. Thomas, R. B. van Dover, S. A. Carter, J. J. Krajewski, W. F. Peck, Jr., J. H. Marshall, and D. H. Rapkine, Appl. Phys. Lett. 64, 2071 (1994)]. We have used both dc reactive sputtering in the on- and off-axis geometries and pulsed laser deposition to grow films of this material. Layers of pure GaInO3 as well as those partially substituted with Ge for Ga or Sn for In have been studied. Both growth techniques are capable of producing films with conductivity ∼400 (Ω cm)−1 and transmission as high as 90% throughout the visible spectrum for ∼1-μm-thick films. The growth techniques differ in the morphology of the films produced as well as in the degree of dopant incorporation that can be achieved. A post-growth anneal in H2 can help produce an optimized oxygen content and a reduction of resistivity. Hall measurements indicate a carrier concentration up to 4×1020 cm−3 for all films and a Hall mobility up to 10 cm2/(V s). Doping appears to be due both to oxygen vacancies and aliovalent ion substitution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The correlations between structural quality and superconducting behavior in 1000-A(ring)-thick Ba2YCu3O7−δ (BYCO) films grown on LaAlO3(100) from the coevaporation of BaF2, Y, and Cu, followed by an optimized ex situ annealing process are reported. Epitaxial films with smooth, laminar morphology and excellent crystallinity can be grown to have critical current density Jc values nearly identical to single crystals. This finding contrasts with the typical observation that Jc values in thin films of BYCO are very high compared to those of single crystals. This is attributed to a greater density of flux pinning sites due to structural defects within the films. The most crystalline films presented here have penetration length λ∼2000 A(ring) with temperature dependencies described well by the Bardeen–Cooper–Schrieffer (BCS) theory. Material disorder of two types can be controlled by the high-temperature stage Ta of the annealing process. The first type is point defects and dislocations the same size or smaller than the coherence length ξab, which Rutherford backscattering/channeling suggests decrease in number with increasing Ta. The second is crevices, pinholes, and microcracks, which are at least one to two orders of magnitude larger than ξab. At Ta 〈 850 °C, crevices, which create areas of nonuniform thickness, occur due to incomplete epitaxial growth and correlate with the presence of weak links. Hence film resistivity is high, Tc is low, and λ is large. As Ta is increased, the film morphology becomes smoother and all electrical properties improve, except for Jc in nonzero applied magnetic fields, since the improved epitaxy correlates with reduced flux pinning. By Ta= 900 °C, the BYCO films are similar to single crystals in both cation alignment and Jc behavior. Above this annealing temperature, pinholes and microcracks develop and increase in both size and density with increasing Ta. Although these relatively large defects do not act as weak links, they do affect magnetic screening (and hence λ), to result in an anomalous temperature dependence that masks the intrinsic BCS behavior.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...