Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 442 (2006), S. 475-478 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The axoneme, which forms the core of eukaryotic flagella and cilia, is one of the largest macromolecular machines, with a structure that is largely conserved from protists to mammals. Microtubule doublets are structural components of axonemes that contain a number of proteins besides tubulin, ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 393 (1998), S. 191-191 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Nature 391, 199–203 (1998) In this Letter, the numbers for the secondary structure elements involved in Taxol binding are incorrect (page 202, second-to-last paragraph of main text). The sentences giving the correct numbers are, ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 89-111 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The microtubule cytoskeleton is a highly regulated system. At different times in the cell cycle and positions within the organism, microtubules can be very stable or highly dynamic. Stability and dynamics are regulated by interaction with a large number of proteins that themselves may change at specific points in the cell cycle. Exogenous ligands can disrupt the normal processes by either increasing or decreasing microtubule stability and inhibiting their dynamic behavior. The recent determination of the structure of tubulin, the main component of microtubules, makes it possible now to begin to understand the details of these interactions. We review here the structure of the tubulin dimer, with particular regard to how proteins and drugs may bind and modulate microtubule dynamics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : International Union of Crystallography (IUCr)
    Acta crystallographica 55 (1999), S. 305-313 
    ISSN: 1600-5724
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Scattering of electrons is affected by the distribution of valence electrons that participate in chemical bonding and thus change the electrostatic shielding of the nucleus. This effect is particularly significant for low-angle scattering. Thus, while chemical bonding effects are difficult to measure with small-unit cell materials, they can be substantial in the study of proteins by electron crystallography. This work investigates the magnitude of chemical bonding effects for a representative collection of protein fragments and a model ligand for nucleotide-binding proteins within the resolution range generally used in determining protein structures by electron crystallography. Electrostatic potentials were calculated by ab initio methods for both the test molecules and for superpositions of their free atoms. Differences in scattering amplitudes can be well over 10% in the resolution range below 5 Å and are especially large in the case of ionized side chains and ligands. We conclude that the use of molecule-based scattering factors can provide a much more accurate representation of the low-resolution data obtained in electron crystallographic studies. The comparison of neutral and ionic structure factors at resolutions below 5 Å can also provide a sensitive determination of charge states, important for biological function, that is not accessible from X-ray crystallographic measurements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature structural biology 5 (1998), S. 451-458 
    ISSN: 1072-8368
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Tubulin and FtsZ share a common fold of two domains connected by a central helix. Structure-based sequence alignment shows that common residues localize in the nucleotide-binding site and a region that interacts with the nucleotide of the next tubulin subunit in the protofilament, suggesting that ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 375 (1995), S. 424-427 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Taxol enhances microtubule polymerization12, inhibits cell replication by preventing spindle dynamics13, and has anti-tumour properties14. It stabilizes both microtubules15 and zinc-induced tubulin crystals16 against low-temperature depolymeriz-ation and ageing. We ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 391 (1998), S. 199-203 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The αβ tubulin heterodimer is the structural subunit of microtubules, which are cytoskeletal elements that are essential for intracellular transport and cell division in all eukaryotes. Each tubulin monomer binds a guanine nucleotide, which is non-exchangeable when it is bound in the ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Electron crystallography is in many ways analogous to X-ray crystallography, except that structure-factor phases are determined directly from high-resolution images. Because proteins are very susceptible to beam damage, most applications have provided resolution in the 10-20 A range which allows ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 30 (1995), S. 146-152 
    ISSN: 0886-1544
    Keywords: zinc-sheets ; macrotubes ; kinesin ; electron microscopy ; microtubules ; tubulin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Moving along a microtubule, kinesin follows a course parallel to the protofilaments; but it is not known whether kinesin binds exclusively on a single protofilament. The presence of zinc during tubulin polymerization induces sheets where neighboring protofilaments are antiparallel. If kinesin could support the motility of these zinc-sheets, then the binding site for a kinesin molecule would be limited to a single protofilament.Kamimura and Mandelkow [1992: J. Cell Biol. 118:865-75] reported that kinesin moves along zinc-sheets. We found that zinc-sheets grown under their conditions often had a microtubule-like structure along one edge. We confirmed the possibility that the motility observed by Kamimura and Mandelkow [1992: J. Cell Biol. 118:865-75] is attributed to the microtubule-like structure rather than the zinc-sheet.To resolve the question of whether kinesin can recognize an antiparallel protofilament lattice, we investigated the kinesin-mediated motility of zinc-macrotubes. At higher free zinc concentrations, zinc-sheets roll up as macrotubes, free of edges. In the presence of 10 m̈M taxol and 100 nM free Zn2+ at pH 6.8, the samples were shown by electron microscopy to contain only macrotubes. Under these buffer conditions, kinesin could bind strongly to axonemal doublets in the presence of AMP-PNP, and generate motility in the presence of ATP, but kinesin did not bind to nor move the macrotubes. This shows that kinesin cannot bind efficiently to nor move on the anti-parallel lattice; it is possible (though not necessary) that the groove between two parallel protofilaments is required for kinesin's motility. © 1995 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0886-1544
    Keywords: cytoskeletal sheets ; intermediate filaments ; blastomere - blastomere contact ; cross-bridges ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Mammalian eggs and embryos possess a major cytoskeletal network composed of large planar “sheets” distributed throughout the cytoplasm. Cytoskeletal sheets are found neither in mammalian somatic cells nor in eggs or embryos of non-mammals. In this study, we have investigated the structural composition of the sheets in eggs and embryos of the golden Syrian hamster by (1) analysis of replicas from quick-frozen, deep-etched specimens, (2) analysis of thick, resinembedded specimens using an intermediate voltage electron microscope (IVEM), (3) laser diffraction of EM images, (4) differential extraction with detergents, and (5) immunocytochemistry. Our results indicate that each sheet is composed of two closely apposed arrays of 10-nm filaments. Each filament within an array is held in register with its neighbor by lateral cross-bridges and the two parallel arrays of filaments are interconnected by periodic cross-bridges about 20 nm in length. Laser diffraction of negatives from IVEM images indicates that each array is composed of fibers that form a square lattice, and the two arrays are positioned in register by cross-bridges forming a single sheet. This lattice forms the skeleton of the sheets which is covered with a tightly packed layer of particulate material. By incubation in media containing different ratios of mixed-micelle detergents, it is possible to remove components sequentially from the sheets and to extract the particulate material. Immunocytochemical localization demonstrates that the sheets bind antibodies to keratin, and to a small extent actin, but do not bind antibodies to vimentin or tubulin. Examination of sheets within embryos at the time of embryonic compaction demonstrates that the sheets begin to fragment and disassemble in regions of blastomeres where desmosomes form, but undergo no structural alterations in interior and basal surfaces of the blastomeres. In regions of blastomere - blastomere contact the sheets fragment and associate with granules resembling keratohyalin granules found in keratinocytes. © 1993 Wiley-Liss, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...