Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 17 (1978), S. 209-213 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Notes: Conclusions We are very satisfied with the experimental results thus far obtained. The stability of the flat interface was unexpected and might lead to a better understanding of the influence of side walls on the stability of the system. The movement induced by curvature, the development of the roll cells, were obtained in these experiments under microgravity. A detailed analysis of this development and its influence on mass transfer will lead to new insights in this transfer process.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 31 (1985), S. 1010-1018 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The nature of the interaction between the flowing phases in a cocurrent gas-liquid downflow through packed beds depends on the type of the flow regime. The interaction is poor and geometric in nature in gas-continuous flow and becomes high and dynamic in pulse flow due to gas dispersion, acceleration, and mixing of the liquid in the pulses. Models to calculate pressure drop in each of the flow regimes are presented, taking into account the respective interactions. Experimental data on pressure drops and liquid holdups were measured in gas-continuous flow for 3 mm glass spheres and 6 mm Raschig rings. An air-water system is used. The literature data on pressure drops and the experimental data, covering liquid velocities from 0.001 m/s to 0.029 m/s and gas velocities from 0.097 m/s to 2 m/s, were compared with the calculated values. It was found that the pressure drop due to dynamic interaction can be as low as 10% and as much as 80% of the total pressure drop for the data examined in this work. An empirical correlation for holdup in gas-continuous flow is given for Rashig rings.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 30 (1984), S. 393-401 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Liquid-side mass transfer coefficients were measured for cocurrent two-phase downflow in 5 and 10 cm diameter columns pakced with 2.5 and 4 mm Raschig rings. Experiments were specifically carried out in the pulsing flow regime. The mass transfer coefficients were determined via absorption of CO2 into buffer solutions with the advantage of a high absorbing capacity. Thus columns of 1 m length could be used. Relations are proposed based on the hydrodynamic phenomena observed in pulsing flow. From these relations a correlation for kL is found in terms of flow rates and packing characteristics that satisfies the experimental data.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 31 (1985), S. 1059-1068 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Local instantaneous solid-liquid mass transfer coefficients were measured in two-phase gas-liquid downflow through packed columns for 3 × 3 mm and 6 × 6 mm cylinders. An electrochemical technique was used. Liquid flow rates from 3.0 to 26.6 kg/m2·s and gas flow rates from 0.07 to 1.16 kg/m2·s covered the gas-continuous, ripple, and pulse flow regimes. Time-averaged mass transfer coefficients in trickle flow and in pulse flow for the pulse proper and the base (outside the pulse) were found to increase with increasing gas and liquid rates. Correlations are presented in terms of liquid phase Reynolds numbers and in terms of Kolmogoroff numbers. The mass transfer coefficients in the pulse were found to correspond closely to the coefficients that would be attained in the dispersed bubble flow regime.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...