Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-203X
    Keywords: Transgenic rice ; Herbicide resistance ; Phosphinothricin acetyl transferase gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Suspension cells of Oryza sativa L. (rice) were transformed, by microprojectile bombardment, with plasmids carrying the coding region of the Streptomyces hygroscopicus phosphinothricin acetyl transferase (PAT) gene (bar) under the control of either the 5′ region of the rice actin 1 gene (Act1) or the cauliflower mosaic virus (CaMV) 35S promoter. Subsequently regenerated plants display detectable PAT activity and are resistant to BASTATM, a phosphinothricin (PPT)-based herbicide. DNA gel blot analyses showed that PPT resistant rice plants contain a bar-hybridizing restriction fragment of the expected size. This report shows that expression of the bar gene in transgenic rice plants confers resistance to PPT-based herbicide by suppressing an increase of ammonia in plants after spraying with the herbicide.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] We introduced the potato proteinase inhibitor II (PINII) gene (pin2) into several Japonica rice varieties, and regenerated a large number of transgenic rice plants. Wound-inducible expression of the pin2 gene driven by its own promoter, together with the first intron of the rice actin 1 gene ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-9788
    Keywords: transgenic rice ; bar ; b-32 ; proteolytic processing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We have previously transformed rice (Oyrza sativa L.) with the maize ribosome-inactivating protein b-32 gene (Zmcrip3a) and the phosphinothricin resistance gene (bar). In the present study, Southern blot hybridization analysis of 56 primary fertile transformants resulted in distinct band patterns, indicating that all the transformants had been generated by independent integration events and 30% of them contained a single copy of the transgene. Segregation analysis of 15 R0 plants revealed that transgene was stably transmitted to their progenies and Southern blot band patterns of R1 progenies remained the same as the corresponding parents, suggesting that all the loci of multiple integration events are genetically linked. Also, in most of the lines, physical presence of the b-32 transgene co-segregated with the phosphinothricin- resistant phenotype, confirming that the transgene is behaving as a normal locus in the genome. However, some of R1 seedlings that contained multiple copies of the transgene became sensitive to phosphinothricin, indicating that its expression was silenced. Immunoblot analysis demonstrated that b-32 protein was produced and the levels of expression differed in different lines, estimated to be 0.5–1% of total soluble protein in the leaf tissues. In addition, the transgene-encoded protein was preferentially processed in germinating seeds and young leaves of R2 transgenic plants in a way similar to that in maize kernels, suggesting that the processing mechanism is conserved in the germination stage between rice and maize.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...