Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Two hours after the injection of (3-[125I]iodotyrosyl3) neurotensin into the striatum, a labeling was observed in the ipsilateral substantia nigra. In the present study, we demonstrated by HPLC that this radioactivity corresponded to intact neurotensin and to degradation products of this peptide. This finding provides the first clear-cut evidence that a neuropeptide can be internalized and retrogradely transported in brain neurons. Therefore, the fact that intact neurotensin can be seen to exist over a long period of time in the cell body suggests that the retrograde transport process could perhaps be involved in the long-term effects of neuropeptides.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 337 (1988), S. 13-17 
    ISSN: 1432-1912
    Keywords: Neurotensin ; Dopamine release ; Striatum ; Nucleus accumbens ; Prefrontal cortex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of neurotensin (NT) on the K+-evoked release of endogenous and tritiated dopamine in striatum and on 3H-dopamine in slices from nucleus accumbens and prefrontal cortex were investigated. In striatum, NT (1–1000 nM) elicited a dose-dependent increase in endogenous and 3H-dopamine release. The dose-response curves were comparable with the two methods. Concerning the comparison of NT modulation of 3H-dopamine release in the three cerebral structures, the peptide induced a more marked effect in striatum with a maximal effect of 150% increase. In accumbens, NT (1–1000 nM) potentiated the K+-evoked 3H-dopamine release, but in contrast with striatum, the plateau corresponded to a 50% increase. In prefrontal cortex, NT (1–1000 nM) induced small but significant effects, with a maximal increase of 50% at 100 nM. Acetyl-NT (8–13) displayed an action similar to the natural peptide while NT (1–8) did not exhibit any effect, suggesting that the action of NT involved a receptor. The presence of tetrodotoxin did not alter the facilitating effects of NT in the three structures, indicating that interneurons were not involved in the action of NT. The comparison of the effects of NT showed that in terms of efficacy, NT induced an increase in dopamine release more marked in striatum than in nucleus accumbens and prefrontal cortex. These results are consistent with differences in NT receptors localization in these three dopaminergic structures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...