Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 32 (1986), S. 592-606 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The problem of synthesizing processing systems via simultaneous structural and parameter optimization is addressed in this paper. Based on a superstructure representation for embedding alternative configurations, a general mixed-integer nonlinear programming (MINLP) framework is presented for the synthesis problem. An efficient outer-approximation algorithm is described for the solution of the underlying optimization problem, which is characterized by linear binary variables and continuous variables that appear in nonlinear functions. The proposed algorithm is based on a bounding sequence that requires the analysis of few system configurations, and the solution of a master problem that identifies new candidate structures. Application of the proposed algorithm is illustrated with the optimal synthesis of gas pipelines.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 32 (1986), S. 123-138 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A procedure is proposed for simultaneously handling the problem of optimal heat integration while performing the optimization of process flow sheets. The method is based on including a set of constraints into the nonlinear process optimization problem so as to insure that the minimum utility target for heat recovery networks is featured. These heat integration constraints, which do not require temperature intervals for their definition, are based on a proposed representation for locating pinch points that can vary according to every set of process stream conditions (flow rates and temperatures) selected in the optimization path. The underlying mathematical formulations correspond to nondifferentiable optimization problems, and an efficient smooth approximation method is proposed for their solution. An example problem on a chemical process is presented to illustrate the economic savings that can be obtained with the proposed simultaneous approach. The method reduces to simple models for the case of fixed flow rates and temperatures.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...