Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Carbon fibre-reinforced polyetheretherketone (CF-PEEK) substrates were coated with titanium by vacuum-plasma-spraying and chemically treated in 10 M sodium hydroxide (NaOH) solution. After NaOH treatment, the specimens were immersed in simulated body fluid (SBF) containing ions in concentrations similar to those of human blood plasma. Scanning electron microscopy, energy-dispersive X-ray analysis and diffuse reflectance Fourier transformed–infrared spectroscopy were used to analyse the NaOH-treated VPS-Ti surface and the calcium phosphate layer formed during immersion in SBF. It was observed that a carbonate-containing calcium phosphate layer was formed on the NaOH-treated VPS-Ti surface during immersion in SBF, whereas no calcium phosphate precipitation occurred on the untreated surfaces. It is therefore concluded that vacuum-plasma-spraying with titanium and subsequent chemical modification in 10 M NaOH solution at 60°C for 2 h is a suitable method for the preparation of bioactive coatings for bone ongrowth on CF-PEEK.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Plasma activation of polyetheretherketone (PEEK) surfaces and the influence on coating formation in a supersaturated calcium phosphate solution was investigated in this study. It was observed that plasma treatment in a N2/O2 plasma had a significant effect on the wettability of the PEEK surface. The contact angle decreased from 85° to 25° after plasma treatment. Cell culture testing with osteoblastic cell lines showed plasma activation not to be disadvantageous to cell viability. X-ray photoelectron spectroscopy (XPS) analysis was performed to characterize the chemical composition of the PEEK surfaces. It was observed that the O1s intensity increased with plasma activation time. At the C1s peak the appearance of a shoulder at higher binding energies was observed. Coating of PEEK was performed in a supersaturated calcium phosphate solution. Coating thicknesses of up to 50 μm were achieved after 24 days of immersion. Plasma activation followed by nucleation in a highly saturated hydroxyapatite solution had a positive effect on the growth rate of the layer on PEEK. Chemical analysis revealed that the coating consists of a carbonate-containing calcium phosphate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Der Chirurg 70 (1999), S. 847-857 
    ISSN: 1433-0385
    Keywords: Key words: Biomaterials ; Biocompatibility ; Process engineering ; Reciprocal technology transfer. ; Schlüsselwörter: Biomaterialien ; Biokompatibilität ; Prozesstechnologien ; wechselseitiger Technologietransfer.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung. Biokompatible Werkstoffe und zugehörige Prozesstechnologien, mit denen eine optimale Strukur- und Oberflächenkompatibilität von Implantaten erreicht werden soll, werden vorgestellt. „Vital-avital composites“ für das „tissue engineering“, Zellkulturmodelle, poröse Keramiken und abbaubare Polymere werden beispielhaft dargestellt. Ein Hauptaspekt liegt auf der Konvertierung von Resultaten der Grundlagenforschung in klinische Anwendungen und auf dem Austausch von Technologien aus dem nichtmedizinischen in den medizinischen Bereich und umgekehrt.
    Notes: Summary. Biomaterials and related process engineering in order to obtain optimal surface and structural biocompatibility of implants and devices are presented. Vital-avital composites for tissue engineering, cell culture models, porous ceramics and degradable polymers are introduced as examples. Emphasis is laid on the conversion of basic research results into clinical applications and on the exchange of technologies from the non-medical into the medical field and vice versa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...