Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0738
    Keywords: Key words Benzene ; CYP2E1 ; Leukaemia ; Bone marrow ; Extrahepatic metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Benzene, a ubiquitous environmental pollutant, is haematotoxic and myelotoxic. As has been shown earlier, cytochrome P450 2E1 (CYP2E1)-dependent metabolism is a prerequisite for the cytotoxic and genotoxic effects of benzene, but which of the benzene metabolites produces toxicity is still unknown. The observed differences between the toxicity of benzene and that of phenol, a major metabolite of benzene, could be explained by alternative hypotheses. That is, whether (1) toxic benzene effects are caused by metabolites not derived from phenol (e.g. benzene epoxide, muconaldehyde), which are formed in the liver and are able to reach the target organ(s); or (2) benzene penetrates into the bone marrow, where local metabolism takes place, whereas phenol does not reach the target tissue because of its polarity. To further investigate hypothesis 2, we used various strains of mice (AKR, B6C3F1, CBA/Ca, CD-1 and C57Bl/6), for which different toxic responses have been reported in the haematopoietic system after chronic benzene exposure. In these strains, CYP2E1 expression in bone marrow was investigated and compared with CYP2E1 expression in liver by means of two independent methods. Quantification of CYP2E1-dependent hydroxylation of chlorzoxazone (CLX) by high-performance liquid chromatography (HPLC; functional analysis) was used to characterize specific enzymatic activities. Protein identification was performed by Western blotting using CYP2E1-specific antibodies. In liver microsomes of all strains investigated, considerable amounts of CYP2E1-specific protein and correspondingly high CYP2E1 hydroxylase activities could be detected. No significant differences in CYP2E1-dependent enzyme activities were found between the five strains (range of medians, 4.6–12.0 nmol 6-OH-CLX/[mg protein × min]) in hepatic tissue. In the bone marrow, CYP2E1 could also be detected in all strains investigated. However, chlorzoxazone hydroxylase activities were considerably lower (range of medians, 0.2–0.8 × 10−3 nmol 6-OH-CLX/[mg protein × min]) compared with those obtained from liver microsomes. No significant (P 〉 0.05) interstrain differences in CYP2E1 expression in liver and/or bone marrow could be observed in the mouse strains investigated. The data obtained thus far from our investigations suggest that strain-specific differences in the tumour response of the haematopoietic system of mice chronically exposed to benzene cannot be explained by differences in either hepatic or in myeloid CYP2E1-dependent metabolism of benzene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0738
    Keywords: Key words Risk assessment ; Species extrapolation ; Local metabolism ; CYP2E1 ; Variability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract When characterizing the health risks for man by exposure to chemicals, species-specific differences have to be taken into consideration, otherwise extrapolation from animal data to the human situation would be inadequate. The site-specific toxicity of chemicals may be explained by the following alternatives: (1) reactive metabolites are generated in the liver and subsequently transported to the target tissue(s); (2) metabolism of the parent compound occurs in the target tissue, a pathway by which the enzymes necessary for activation must be expressed in the target tissue. Cytochrome P450 2E1 (CYP2E1) is an important phase-I enzyme activating several chemicals. In the study described in this paper, myeloid intra- and interspecies variability in the expression of CYP2E1 has been investigated in rats, rabbits and man, because the bone marrow represents an important target organ for toxic effects of several chemicals, e.g. benzene. CYP2E1 at the protein level was detected by Western blotting and enzyme activities were determined by CYP2E1-dependent hydroxylation of chlorzoxazone (CLX). In the bone marrow of Wistar rats, the CLX hydroxylase activities were within the same order of magnitude (range: 0.1–0.4 pmol/mg protein per min) as previously described for mice (range 0.2–0.8 pmol/mg protein per min), whereas the CYP2E1 activities in two strains of rabbits were significantly higher (range: 1.7–4.7 pmol/mg protein per min) than in the rodents (P 〈 0.05). In human CD34+ bone marrow stem cells, CYP2E1 could also be detected on the protein level by Western blotting. The data demonstrate a presence of CYP2E1 in the bone marrow of all species investigated, thus supporting the hypothesis of CYP2E1-dependent local metabolism of several chemicals as a factor possibly contributing to their myelotoxicity and haematotoxicity. The data show that intraspecies/intrastrain variability of CYP2E1 activity in rodents is small. However, CYP2E1 activity between rodents and a non-rodent species was quite different indicating considerable interspecies variability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...