Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Chaos 9 (1999), S. 298-307 
    ISSN: 1089-7682
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Phase separation kinetics and morphology of binary polymer mixtures (A/B) in the presence of photochemical reactions were investigated by using phase-contrast optical microscopy combined with digital image analysis. The polymers were chemically designed in such a way that two types of chemical reactions, intermolecular photodimerization and intramolecular photoisomerization, of polymer segments can be induced and controled by irradiation with ultraviolet light. Unlike the conventional case, the phase separation in the presence of these reactions is spontaneously frozen due to the suppression of the long-wavelength instabilities, resulting in stationary spatial structures with intrinsic periodicities. These characteristic length scales are determined by the competition between the two antagonistic interactions: phase separation as a relatively short-range activation and the photochemical reaction as a long-range inhibition. Furthermore, it was found that the spatial symmetry breaking of concentration fluctuations can emerge from the elastic stress associated with the nonhomogeneous kinetics of the reactions. Experimental data obtained with three types of reactions: A-A only cross-link, A-A and B-B simultaneous cross-links and the reversible A(if and only if)B photoisomerization are described. These results do not only indicate that combination of chemical reactions and phase separation could provide a novel method to control the morphology of multiphase polymer materials, but also suggest that photoreactive polymers can be used as a chemical system to study the mode-selection process in polymers far from thermodynamic equilibrium. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...