Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 85 (1973), S. 303-315 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Description / Table of Contents: Zusammenfassung In der vorliegenden Arbeit sollten folgende Fragen beantwortet werden: a) Inwieweit ändert sich die Beutefangaktivität der Erdkröte, wenn man die Distanz zwischen Tier und Beuteobjekt variiert und hierbei die Sehwinkelgröße oder die absolute Objektgröße konstant hält? b) Bevorzugt die Kröte unter Beuteobjekten stets eine bestimmte Sehwinkelgröße oder erkennt sie — unabhängig von der Distanz — eine bestimmte absolute Objektgröße als optimal für ihr Fangverhalten. 1. Bei konstanter Absolut- oder Sehwinkelgröße einer Attrappe sank die Beutefangwendeaktivität generell mit zunehmender Attrappen-Distanz ab. 2. Unter quadratischen Objekten, die der Kröte in konstantem Abstand geboten wurden, löste eine bestimmte Größe maximale Beutefangaktivität aus. Bei Variation des Abstandes blieb diese optimale Größe über der metrischen Skala konstant („Größenkonstanz-Phänomen”); siebetrug ca. 7 mm Kantenlänge. Dementsprechend verschob sich der Optimalwert auf der Sehwinkelgradskala für entfernte Objekte in Richtung kleiner Werte, für nahe in Richtung großer. 3. Objektgrößenkonstanz war für die orientierendeWendereaktion des Beutefangs auch bei einäugigen Kröten nachweisbar.Im Schnappverhalten war dieses Phänomen jedoch an das binokulare Sehen gebunden. 4. Nach Ausschaltung der Thalamus-Praetecum-Region waren Größenkonstanz-Phänomene nicht mehr eindeutig nachzuweisen. Vielleicht sind in diesem Kerngebiet Neurone zu suchen, die — ähnlich wie im visuellen Cortex des Menschen — ihre excitatorischen rezeptiven Feldgrößen der jeweiligen Objektdistanz über „z-Achsen-Lokalisationsmechanismen” anpassen.
    Notes: Summary The aim of this report is to answer the following questions: a) To what extent does the prey-catching activity of a toad change as the distance between it and a prey-dummy changes while at the same time the size of the visual angle or the absolute size of the dummy are held constant? b) Does the toad prefer a particular angular size in order to catch prey or can it recognize—irrespective of the distance— a particular absolute object size which is optimal for its behaviour? 1) For constant absolute or visual angular size of a prey-dummy, the prey-catching turning activity generally falls off with increasing distance between animal and dummy (Fig. 2). 2) If square dummies are presented to toads from a constant distance, then a particular dummy size elicits maximal prey-catching activity. When the distance is varied, this optimal size remains constant when measured in absolute units of length (“size-constancy” phenomenon); the edge length of such an optimal dummy is of about 7 mm (Table 1). On the visual angle scale (which is not absolute), the optimal value accordingly shifts towards smaller values for distant objects, towards larger values for objects nearer to the animal (Fig. 4). 3) For the orientingturning reaction of the prey-catching sequence object size-constancy is independent of binocular vision (Table 1; compare Fig. 4A and B). However, insnapping behaviour, this phenomenon is linked to the information leaving both eyes (Table 1; compare Fig. 5A and B). 4) It was not possible to demonstrate the size-constancy phenomenon after the thalamus-pretectal region has been destroyed. Presumably it is in the nuclei of this region that one should look for neurons which—like certain cells in the human visual cortex—“fit” their excitatory receptive field size to the specific object distance in question.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 92 (1974), S. 117-130 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Description / Table of Contents: Zusammenfassung Die Entwicklung eines Miniatur-Kopfaufsatzes wird beschrieben, mit dem es möglich ist, Aktionspotentiale von einzelnen Neuronen aus der Sehbahn freibeweglicher Kröten abzuleiten. Es wurden zunächst zwei Fragen gestellt: 1. Wie verhalten sich die retinalen „off-” bzw. „on-off”-Ganglienzellen, wenn die Kröte beim Augenschließen (Lidschluß) ihre Netzhaut beschattet. 2. Kröten führen keine unwillkürlichen Augenbewegungen durch. Frage: Gibt es „ersatzweise” atmungssynchrone Augenbewegungen, mit deren Hilfe die Kröte Informationen über die stationäre Umwelt erhält ? 1. Während des Lidschlusses werden die retinalen „on-off” und „off”-Ganglienzellen (Klassen III und IV) gehemmt — möglicherweise durch Efferenzen aus dem ZNS. Demnach wird das Gehirn der Kröte durch diese Ganglienzellen über Helligkeitsänderungen informiert, die ausschließlich in der Umwelt erfolgen. 2. Bei der ruhig sitzenden Kröte werden die retinalen Klasse II, III und IV Ganglienzellen durch stationäre visuelle Reizmuster nicht aktiviert, auch dann nicht, wenn die Kröte während des Atmens ihren Kehlboden bewegt. Man kann daraus zunächst schließen, daß der ruhig sitzenden Kröte in der untersuchten Reiz-situation auf dem Wege der retino-tectalen Projektion keine Informationen über die gemusterte stationäre Umwelt zugeführt werden.
    Notes: Summary The development of a miniature headpiece with which action potentials can be recorded from single neurones in the visual pathway of freely moving toads is described (Figs. 2, 3, and 4). At first two questions were posed: (1) Do the retinal „off” and „on-off” ganglion cells respond when the toad casts a shadow on the retina while its eye is closed? (2) In view of the fact that toads do not perform any involuntary eye movements to help them receive information about the stationary environment, are there eye movements that are synchronized with respiration to act as a „substitute”? 1. During eye closure, the retinal „on-off” and „off” ganglion cell-classes III and IV respectively (Figs. 5A and B), are inhibited presumably by efferences from the CNS (Figs. 5C1, C2 and 6). Thus the brain of the toad receives through these ganglion cells information about changes in brightness exclusively of the surroundings. 2. When a toad sits quietly, the retinal class II, III and IV ganglion cells are not activated by a stationary visual stimulus. Under these circumstances the cells remain silent even during respiratory pressure changes in the buccal cavity. Thus the initial conclusion is that the toad receives no information about the patterned, stationary environment via the retino-tectal projection when it is sitting quietly in the present situation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Description / Table of Contents: Zusammenfassung 1. Frühere Experimente hatten gezeigt, daß Kröten für die Unterscheidung Beute/Feind hauptsä chlich zwei „Gestalf”-Informationen nutzen: (i) Die Flä chenausdehnung in der Bewegungsrichtung bedeutet generell Beute, (ii)Ausdehnung quer zur Bewegungsrichtung signalisiert dagegen Feind. Beide Parameter werden durch bestimmte „neuronale Filter” ausgewertet, von denen der eine (i) im Tectum opticum (Teetum-1-Neurone) und der andere (ii) in der Thalamus/Praetectum-Region lokalisiert ist. Es wurde vermutet, daß das Beute-Erkennungssystem auf subtraktiver Interaktion zwischen den Tectum-1- und Thalamus/Praetectum-Neuronen beruht. Hierbei erhält ein weiteres Neuron im Tectum opticum (Tectum-2-Neuron) erregende Eingänge von Tectum-1- und hemmende von Thalamus/Praetectum-Neuronen. 2. Nach Abtrennung der Thalamus/Praetectum-Region vom Tectum opticum mit Hilfe eines Messerschnitts war die Antwort der Tectum-1- und -2-Neurone auf bewegte visuelle Eeizmuster „enthemmt”. Die Größe ihrer exzitatorischen rezeptiven Felder von ca. 27 ° Durchmesser blieb hiervon jedoch unbeeinflußt. 3. Die Tatsache, daß sowohl Tectum-2- als auch Tectum-1-Neurone nach Thalamus/Praetectum-Ausschaltung bei Vergrößerung der Reizfläche eines Musters etwa den gleichen Aktivierungsanstieg zeigten, weist darauf hin, daß das bisherige „Interaktionsmodell” für die Beute/Feind-Erkennung das neuronale Verschaltungs-prinzip wiedergibt. 4. Die neurophysiologischen Befunde stehen prinzipiell in guter Übereinstimmung mit entsprechenden quantitativen Resultaten über das Beutefangverhalten: Nach Ausschaltung der Thalamus/Praetectum-Region vermag die Kröte visuelle Muster nicht mehr verhaltensrelevant zu unterscheiden.
    Notes: Summary 1. Recent experiments have shown that toads discriminate prey from enemy objects by using two “gestalt” information mechanisms: (i) The surface expansionin the direction of movement means prey; (ii) the expansionperpendicular to the direction of movement signifies enemy. Both parameters are encoded by particular neuronal “gestalt” filters: one of them (i) is located in the optic tectum (tectum-1-neurons) and the other (ii) in the thalamus/pretectal region. 2. It was supposed that prey recognition is due to subtractive interactions between both tectum-1- and thalamus/pretectal-neurons: A second neuron in the optic tectum receives excitatory inputs from tectum-1-neurons and inhibitory ones from particular units of the thalamus/pretectal region. 3. After elimination of the thalamus/pretectal region from the optic tectum by a careful knife cut (Fig. 2) the responses of tectum-1- and -2-neurons to visual stimulus objects, moved through their receptive fields, were “disinhibited” (compare Figs. 3Aa and b). It is remarkable that there was no effect on the size of the excitatory receptive fields. The field diameter of tectal neurons of this layer in normal and lesioned toads was about 27 °. 4. The fact that after thalamus/pretectal lesions the tectum-1- as well as tectum-2-neurons show the same increase of response with increasing size of moving stimuli, indicates that the recently presented “neuronal interaction model” for the prey recognition system describes thebasic wiring. 5. The present neuro-physiological findings (Fig. 3A2a and b) are in good accordance with corresponding effects on the prey-catching behavior (Fig. 3Ba and b): As a result of thalamus/pretectal lesions toads are not able to discriminate visual patterns in a behaviourally relevant manner. Their prey-catching behavior is “disinhibited”.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 92 (1974), S. 131-148 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Description / Table of Contents: Zusammenfassung Frühere quantitative Verhaltensexperimente hatten ergeben, daß die Kröte für die Unterscheidung „Beute/Feind” hauptsächlich zwei Flächen-parameter eines bewegten Objektes nutzt: (a) die Objektausdehnungin der Bewegungsrichtung — sie bedeutet generell Beute; (b) die Ausdehnungquer zur Bewegungsrichtung — sie bedeutet generell „keine Beute” oder „Feind”. Mit Hilfe von Einzelzellableitungen wurde geprüft, ob es im zentralen visuellen System der Kröte Neurone gibt, die an der Auswertung solcher Gestaltparameter beteiligt sind. 1. In der Thalamus/Praetectum-Region (überwiegend caudaler dorsaler Thalamus) wurden Neurone mit zirkulären excitatorischen rezeptiven Feldern (ERF) von ca. 46 ° ø quantitativ untersucht. Wenn man unterschiedliche rechtwinklige Objekte durch das rezeptive Feldzentrum bewegte, so stieg die neuronale Entladungsrate in successiven Versuchen lediglich mit zunehmender Ausdehnung eines Objektsquer zur Bewegungsrichtung an. (Die Werte für die Parameter Kontrast und Winkelgeschwindigkeit wurden konstant gehalten.) 2. Im Tectum opticum (Stratum griseum et album centrale) konnten Neurone identifiziert werden, die ein zirkuläres, ca 27 ° gro\es ERF hatten. Einige von ihnen (Tectum-1-Neurone) gaben hauptsächlich Objektausdehnungenin der Bewegungsrichtung durch Modulation ihrer Entladungsrate an; hierbei erhöhte sich die Entladungsrate — in Grenzen — mit zunehmender Ausdehnungskomponente der Reizfläche. 3. Andere Einheiten aus denselben Tectum-Schichten (Tectum-2-Neurone) unterschieden sich von den ersten hauptsächlich dadurch, daß die Entladungsrate auf Flächen-Ausdehnungskomponentenquer zur Bewegungsrichtung gesenkt wurde. Ihre Antwortcharakteristik „spiegelte” sehr gut den Schlüsselreiz „Beute” wider. 4. Es wird vermutet, daß der Beute/Feind-Erkennungsprozeß auf subtraktiver und additiver Interaktion zwischen den tectalen und thalamus-praetectalen „Gestalt”-Filtern beruht. Hierbei könnte sich die Antwortcharakteristik von Tectum-2-Neuronen für unterschiedliche Flächenmuster durch erregende Eingänge von Tectum-1- und hemmende Eingänge von Thalamus/Praetectum-Neuronen ergeben.
    Notes: Summary Quantitative behavioral experiments demonstrated that toads discriminate moving prey and enemy objects mainly by two surface parameters: (i)Object expansion in the direction of movement generally means “prey” (Fig. 7Ca) while (ii)expansion perpendicular to the direction of movement signifies “not prey” or “enemy” (Fig. 7Cb). Single unit recordings along the central visual path should answer the question as to whether there are neuronal nerve nets responsible for processing those behaviorally relevant surface parameters of moving visual objects (Figs. 1 and 2). 1. In the thalamus/pretectal region (mainly the caudal dorsal thalamus; see Fig. 3) units with circular excitatory receptive fields (ERF) of about 46 ° diameter were investigated. During successive experiments the discharge rate of these neurons was increasing only when the expansion of an object — moved through the center of the receptive field—was increased perpendicularly to the direction of motion, (Figs. 5Ab, c and 6A). (The stimulus parameters of contrast and angular velocity were held constant.) 2. In the optic tectum (stratum griseum et album centrale; see Fig. 4), units were identified showing circular ERFs of about 27 ° diameter. Some of these neurons (tectum 1 neurons) were activated mainly by increasing object expansion in the direction of movement (Figs. 5Ba, c and 6B). 3. Other units of the same tectal layer (tectum 2 neurons) differed from tectum 1 neurons as follows: The discharge rate diminished according to the increasing surface expansion of the stimulus object perpendicular to the direction of movement. The response of those neurons “reflected” the key stimulus “prey” (Figs. 5C and 6C; compare Figs. 7 B and C). 4. It is supposed that prey/enemy recognition is a result of subtractive and additive interactions between tectal and thalamus/pretectal “gestalt” filters (Fig. 8). The response characteristic of tectum 2 neurons to the size of a moving stimulus may be the result of excitatory inputs from tectum 1 and inhibitory from thalamus/ pretectal neurons (Fig. 8; compare Figs. 7 A and B). Presumably those units (Fig. 7 B) act as a “trigger system” for the prey-orienting movement (Fig. 7C).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 92 (1974), S. 343-356 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Description / Table of Contents: Zusammenfassung 1. Die Retina wird in den zentralen Schichten des Tectum opticum (Stratum griseum et album centrale) repräsentiert. Die Topographie entspricht dem Projektionsschema der in den superficialen Schichten endenden Opticusfasern. 2. In der Thalamus/Praetectum (TP)-Region werden die Retina-Areale ebenfalls vertreten. Die Projektionsverhältnisse sind — auf die rostro-caudale Hirnachse bezogen — spiegelbildlich zum Projektionsschema des Tectum optieum repräsentiert. 3. Wenn man einen Bezirk der TP-Region ausschaltet, so ist im Verhaltensversuch die Beutefangreaktion auf Objekte „enthemmt”, die in einem dem Projektionsschema entsprechenden Teil des Gesichtsfeldes bewegt werden. 4. Physiologische Interaktionen zwischen Tectum und Thalamus/Praetectum ließen sich in kombinierten Hirnreizungs-Ableitungsversuchen nachweisen. So war die Antwort von bestimmten Tectum-Neuronen auf bewegte visuelle Reizmuster nach kurz vorhergehender punktförmiger elektrischer TP-Reizung gehemmt. Umgekehrt konnten bestimmte bewegungsspezifische Neurone der TP-Region durch elektrische Tectum-Reizung aktiviert werden. 5. Hinweise auf cholinergische Verbindungen innerhalb des hemmenden Interaktionssystems ergaben pharmakologische Versuche. Nach lokaler Applikation von Curare auf verschiedene Bereiche der Tectum-Oberfläche war die Beutefangorientierungsreaktion für zugeordnete Gesichtsfeldausschnitte auf bewegte Reizmuster „enthemmt”. Ähnliche Effekte ließen sich mit Atropin erzielen. Acetylcholin hatte auf das Beutefangverhalten hemmende Wirkung.
    Notes: Summary 1. The retina is represented in the central layers of the optic tectum (stratum griseum et album centrale). The topography (Fig. 1) corresponds to the projection diagram of the optic fiber endings in the superficial layers. 2. The retina areas are also represented in the thalamus/pretectum (TP-region). The projection (Fig. 2) — in relation to the rostro-caudal brain axis — is represented in a mirror image of the optic tectum projection diagram. 3. If an area of the TP-region is excluded, then in a behavioral experiment the prey catching reaction is “disinhibited” to objects that are moved in a part of the field of vision corresponding in some way to the projection diagram (Fig. 3). 4. Physiological interactions between tectum and thalamus/pretectum were proven in combined brain-stimulation/recording experiments. Thus, immediately after electrical point stimulation of the TP-region the response of certain tectum neurons to moving visual stimulus patterns was inhibited (Fig. 4A). Conversely, movement-specific neurons of the TP-region could be activated through electrical stimulation of the optic tectum (Fig. 4B). 5. Pharmacological experiments resulted in some first indications for cholinergic pathways within the neuronal inhibitory interaction system. Following local application of curare on various areas of the tectum surface, the prey-catching-orientation reactions to moving stimulus patterns were hyperexcited for particular parts of the visual field (Fig. 5A). Similar effects were achieved with atropine. Acetylcholine had an inhibiting effect on the prey catching behavior.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 94 (1974), S. 177-186 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary 1) During the summer months, toad's prey-catching activity released by white squares moving in front of a black background was much more readily triggered than with black objects of the same size moving before a white background (Fig. 1A). In the fall and winter months, this preference was reversed: black in front of white then attracted relatively more than white in front of black (Fig. 1B). 2) The response of retinal class II ganglion cells to corresponding objects moved through the center of their receptive fields showed similar changes in the black/white sensitivity. It was influenced by the following factors: (i) the location of the receptive field; (ii) the angular size of the stimulus; (iii) the time of year. 3) During the summer, neurons with receptive fields in the lower visual field were more strongly activated by square white objects (1–4° in size) than by black ones, provided the value of the stimulus background contrast remained constant (Fig. 2C). Conversely, with stimuli of 4–16°, neurons with receptive fields in the upper visual field were more strongly activated by black than by white (Fig. 2A). 4) During the fall and winter months, this relationship is partially reversed (Fig. 2; see also Fig. 7). At this time the response of class II neurons with ventral receptive fields was maximal to black objects (4–16° in size). Neurons with dorsal receptive fields, however, were activated maximal by white patterns (1–4° in size). 5) The cause for this seasonal dependency of contrast-detection of a stimulus could be based on efferent influence of the “on”- and “off”-zones in the receptive field. The question of biological significance admits only speculation at this time. Possibly these phenomena are involved in determining “search patterns” for the capture of prey.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 16 (1972), S. 41-59 
    ISSN: 1432-1106
    Keywords: Visual system ; Retinal ganglion cell responses ; Toad
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Neuronal classes. Recordings from single optic nerve fibers of the common toad Bufo bufo (L.) have revealed three types of retinal ganglion cells which correspond to classes II, III and IV in the frog. 2. Receptive field organization. All neurones have a central excitatory field, ERF, surrounded by an inhibitory one, IRF (Fig. 10a, b). The ERF for each cell class was ERFII ≈ 4°, ERFIII ≈ 8°, ERFIV = 12–15°. 3. Illuminance change over the entire visual field had no effect on class II neurones, produced an “on — off” response in class III and an “off” response in class IV (Fig. 2b–c). 4. Angular size of stimuli moved through the central rezeptive field (constant angular velocity and stimulus background contrast). (i) Squares: As the edge length approached the ERF diameter, the discharge rate of all neurones increased, then decreased for larger squares which activated the inhibitory surround (Figs. 3, 4a). (ii) Extending a vertical stripe in the horizontal direction of movement had a similar effect (Fig. 4b). (iii) Elongating a horizontal stripe by more than 2° in the direction of movement produced no change in the discharge rate (Fig. 4c). (iv) Simultaneous movement of two stimuli a and b through the ERF caused a greater discharge than for either allone. Responses to a in the ERF were inhibited if b was in the IRF (Fig. 5). 5. Increased angular velocity (constant contrast and angular size) produced increased activation of all neurones (Fig. 6a–d). The degree of increase was different in each neuronal class (Fig. 7A). 6. Stimulus background contrast (constant angular size and velocity). The discharge rate generally increased for increasing contrast between stimulus and background (Fig. 8). A white stimulus against black background produced maximal activation of class II neurones; black on white was maximally effective for the other two classes (Fig. 9a–c). 7. Input-output functions. A power function best describes the relationships between impulse frequency and (i) stimulus angular velocity, and (ii) stimulus background contrast (Eqs. 9, 11). Impulse frequency is logarithmically dependent on stimulus area (Eqs. 3–6). 8. Retinal output and visual behaviour. The neurophysiological findings are compared with quantitative results previously obtained from corresponding behavioural experiments concerning visually induced prey-catching and avoidance reactions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Behavioural Processes 4 (1979), S. 99-106 
    ISSN: 0376-6357
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Psychology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0376-6357
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Psychology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0376-6357
    Keywords: Disinhibitory Control ; Forebrain ; Toad ; Visual prey-catching
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Psychology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...