Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Numerische Mathematik 81 (1999), S. 497-520 
    ISSN: 0945-3245
    Keywords: Mathematics Subject Classification (1991):76D99; 76S05
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract. From the Navier-Stokes/Brinkman model, a penalization method has been derived by several authors to compute incompressible Navier-Stokes equations around obstacles. In this paper, convergence theorems and error estimates are derived for two kinds of penalization. The first one corresponds to $L^2$ penalization inducing a Darcy equation in the solid body, the second one corresponds to a $H^1$ penalization and induces a Brinkman equation in the body. Numerical tests are performed to confirm the efficiency and accuracy of the method.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Acta applicandae mathematicae 7 (1986), S. 49-77 
    ISSN: 1572-9036
    Keywords: 35B40 ; 35K55 ; 35Q20 ; 76R10 ; 76S05 ; Asymptotic behaviour ; porous media ; free convection ; Darcy law ; nonlinear system
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Description / Table of Contents: Résumé Nous étudions ici un système d'équations aux dérivées partielles qui gouverne la convection naturelle dans un milieu poreux soumis à un gradient de température ∇T. Sous leur forme la plus générale, ces équations s'écrivent: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa% aaleaacaaIXaaabeaakmaaceaaeaqabeaacqGHiiIZdaWcaaqaaiab% gkGi2kabeg8aYbqaaiabgkGi2kaadshaaaGaey4kaSIaaeizaiaabM% gacaqG2bGaaeiiaiabeg8aYjaadAfacqGH9aqpcaaIWaaabaWaaSaa% aeaacqaHbpGCaeaacqGHiiIZaaWaaSaaaeaacqGHciITaeaacqGHci% ITcaWG0baaaiabgUcaRiaabEgacaqGYbGaaeyyaiaabsgacaqGGaGa% amiCaiabgkHiTiabeg8aYjaadEgacqGHRaWkcqaH8oqBcaWGlbWaaW% baaSqabeaacqGHsislcaaIXaaaaOGaaeiiaiaadAfacqGH9aqpcaaI% WaaabaWaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaaiaacIcacq% aHbpGCcaWGJbGaaiykamaaCaaaleqabaGaaiOkaaaakiaadsfacqGH% sislcaqGGaGaaeizaiaabMgacaqG2bGaaeiiaiaabU5adaahaaWcbe% qaaiaabQcaaaGccaqGNbGaaeOCaiaabggacaqGKbGaaeiiaiaadsfa% cqGHRaWkcaGGOaGaeqyWdiNaam4yaiaacMcadaWgaaWcbaGaamOzaa% qabaGccaWGwbGaaeiiaiabgwSixlabgEGirlaadsfacqGH9aqpcaaI% WaaabaGaeqyWdiNaeyypa0JaeqyWdi3aaSbaaSqaaiaadkhaaeqaaO% GaaiikaiaaigdacqGHsislcqaHXoqycaGGOaGaamivaiabgkHiTiaa% dsfadaWgaaWcbaGaamOCaaqabaGccaGGPaGaaiykaaaacaGL7baaaa% a!9527!\[P_1 \left\{ \begin{gathered} \in \frac{{\partial \rho }}{{\partial t}} + {\text{div }}\rho V = 0 \hfill \\ \frac{\rho }{ \in }\frac{\partial }{{\partial t}} + {\text{grad }}p - \rho g + \mu K^{ - 1} {\text{ }}V = 0 \hfill \\ \frac{\partial }{{\partial t}}(\rho c)^* T - {\text{ div \Lambda }}^{\text{*}} {\text{grad }}T + (\rho c)_f V{\text{ }} \cdot \nabla T = 0 \hfill \\ \rho = \rho _r (1 - \alpha (T - T_r )) \hfill \\ \end{gathered} \right.\] ε désigne la porosité, ρ la masse volumique du fluide, V la vitesse, p la pression, T la température du fluide, μ la viscosité, K et % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4MdmaaCa% aaleqabaGaaeOkaaaaaaa!37E8!\[{\text{\Lambda }}^{\text{*}} \] sont les tenseurs respectifs de perméabilité et de conductivité thermique. La chaleur volumique du fluide est notée (ρc) f , celle du solide (ρc) s , et on définit alors la chaleur volumique équivalente par la relation: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeikaiabeg% 8aYjaadogacaqGPaWaaWbaaSqabeaacaqGQaaaaOGaeyypa0Jaeyic% I4Saaiikaiabeg8aYjaadogacaGGPaWaaSbaaSqaaiaadAgaaeqaaO% Gaey4kaSIaaiikaiaaigdacaqGGaGaeyOeI0IaeyicI4Saaiykaiaa% cIcacqaHbpGCcaWGJbGaaiykaaaa!4C87!\[{\text{(}}\rho c{\text{)}}^{\text{*}} = \in (\rho c)_f + (1{\text{ }} - \in )(\rho c)\]. De façon très classique, dans les problèmes de convection, on simplifie ce modèle en faisant l'approximation de Boussinesq qui consiste à négliger les variations de la masse volumique sauf dans le terme ρg, voir par exemple [6]. Ce modèle connu depuis longemps a été très étudié par de nombreux physiciens et numériciens depuis une dizaine d'années (voir par exemple [3–5, 7, 8, 18, 24]) mais à notre connaissance accune étude théorique n'a été entreprise jusqu'à aujourd'hui. On se limitera ici au cas d'un milieu homogène isotrope remplissant une cavité parallélépipédique dont l'un des axes a même direction que l'accélération de la pesanteur g. Sous forme adimensionnelle le système P 2 s'écrit: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa% aaleaacaaIXaaabeaakmaaceaaeaqabeaacqGHiiIZdaWcaaqaaiab% gkGi2kabeg8aYbqaaiabgkGi2kaadshaaaGaey4kaSIaaeizaiaabM% gacaqG2bGaaeiiaiabeg8aYjaadAfacqGH9aqpcaaIWaaabaWaaSaa% aeaacqaHbpGCaeaacqGHiiIZaaWaaSaaaeaacqGHciITaeaacqGHci% ITcaWG0baaaiabgUcaRiaabEgacaqGYbGaaeyyaiaabsgacaqGGaGa% amiCaiabgkHiTiabeg8aYjaadEgacqGHRaWkcqaH8oqBcaWGlbWaaW% baaSqabeaacqGHsislcaaIXaaaaOGaaeiiaiaadAfacqGH9aqpcaaI% WaaabaWaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaaiaacIcacq% aHbpGCcaWGJbGaaiykamaaCaaaleqabaGaaiOkaaaakiaadsfacqGH% sislcaqGGaGaaeizaiaabMgacaqG2bGaaeiiaiaabU5adaahaaWcbe% qaaiaabQcaaaGccaqGNbGaaeOCaiaabggacaqGKbGaaeiiaiaadsfa% cqGHRaWkcaGGOaGaeqyWdiNaam4yaiaacMcadaWgaaWcbaGaamOzaa% qabaGccaWGwbGaaeiiaiabgwSixlabgEGirlaadsfacqGH9aqpcaaI% WaaabaGaeqyWdiNaeyypa0JaeqyWdi3aaSbaaSqaaiaadkhaaeqaaO% GaaiikaiaaigdacqGHsislcqaHXoqycaGGOaGaamivaiabgkHiTiaa% dsfadaWgaaWcbaGaamOCaaqabaGccaGGPaGaaiykaaaacaGL7baaaa% a!9527!\[P_1 \left\{ \begin{gathered} \in \frac{{\partial \rho }}{{\partial t}} + {\text{div }}\rho V = 0 \hfill \\ \frac{\rho }{ \in }\frac{\partial }{{\partial t}} + {\text{grad }}p - \rho g + \mu K^{ - 1} {\text{ }}V = 0 \hfill \\ \frac{\partial }{{\partial t}}(\rho c)^* T - {\text{ div \Lambda }}^{\text{*}} {\text{grad }}T + (\rho c)_f V{\text{ }} \cdot \nabla T = 0 \hfill \\ \rho = \rho _r (1 - \alpha (T - T_r )) \hfill \\ \end{gathered} \right.\] Dans % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCLaey% ypa0Jaai4EaiaacIcacaWG4bGaaiilaiaabccacaWG5bGaaeilaiaa% bccacaWG6bGaaiykaiabgIGiolaac2facaaIWaGaaiilaiaabccaca% WGmbGaai4waerbbjxAHXgaiuaacaWFfrGaaiyxaiaaicdacaGGSaGa% aeiiaiaadYgacaGGBbGaa8xreiaac2facaaIWaGaaiilaiaabccaca% WGObGaai4waiaac2haaaa!54B3!\[\Omega = \{ (x,{\text{ }}y{\text{, }}z) \in ]0,{\text{ }}L[]0,{\text{ }}l[]0,{\text{ }}h[\} \]: de frontière Γ les conditions aux limites sont: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGub% GaaiikaiaadIhacaGGSaGaaeiiaiaadMhacaGGSaGaaeiiaiaabcda% caGGPaGaeyypa0JaaGymaiaacYcacaqGGaGaaeiiaiaabccacaqGGa% GaaeiiaiaadsfacaGGOaGaamiEaiaacYcacaqGGaGaamyEaiaacYca% caqGGaGaamiAaiaacMcacqGH9aqpcaaIWaGaaiilaaqaamacmc4caa% qaiWiGcWaJaAOaIyRaiWiGdsfaaeacmcOamWiGgkGi2kacmc4G4baa% aiaacIcacaaIWaGaaiilaiaabccacaWG5bGaaiilaiaabccacaWG6b% Gaaiykaiabg2da9maalaaabaGaeyOaIyRaamivaaqaaiabgkGi2kaa% dIhaaaGaaiikaiaadYeacaGGSaGaaeiiaiaadMhacaGGSaGaaeiiai% aadQhacaGGPaGaeyypa0ZaaSaaaeaacqGHciITcaWGubaabaGaeyOa% IyRaamiEaaaacaGGOaGaamiEaiaacYcacaqGGaGaamiBaiaacYcaca% qGGaGaamOEaiaacMcacqGH9aqpcaaIWaGaaiilaaqaaiaadAfacqGH% flY1caqGGaGaamOBamaaBaaaleaaruqqYLwySbacfaGaa8hFaiabgk% Gi2kabfM6axbqabaGccqGH9aqpcaaIWaaaaaa!8886!\[\begin{gathered} T(x,{\text{ }}y,{\text{ 0}}) = 1,{\text{ }}T(x,{\text{ }}y,{\text{ }}h) = 0, \hfill \\ \frac{{\partial T}}{{\partial x}}(0,{\text{ }}y,{\text{ }}z) = \frac{{\partial T}}{{\partial x}}(L,{\text{ }}y,{\text{ }}z) = \frac{{\partial T}}{{\partial x}}(x,{\text{ }}l,{\text{ }}z) = 0, \hfill \\ V \cdot {\text{ }}n_{|\partial \Omega } = 0 \hfill \\ \end{gathered} \], où n est la normale unitaire sortante à Γ. Le vecteur adimensionnel k est pris égal à-e z, Ra * est un paramètre proportionnel à la contrainte exercée au milieu et S un paramètre très petit [S≤min(10-6, 10-6 Ra *)] que l'on fera tendre par la suite vers zéro. Dans [10, 11] nous avons étudié le problème bidimensionnel aussi bien d'évolution que stationnaire et nous avons montré, outre un théorème d'existence, d'unicité et de régularité, la présence de plusieurs solutions stationnaires. Le phénomène nous a incité à étudier le comportement asymptotique des solutions du problème d'évolution. Afin de rendre cette étude plus complète nous avons décidé de travailler en dimension 3 d'espace. Ce papier donne les résultats préliminaires à une étude un peu fine du comportement asymptotique. Nous allons en particulier établir un théorème de régularité et donner une majoration uniforme des dérivées secondes en espace des solutions dans le cas où S=0. Ces propriétés sont similaires à celles connues pour les équations de Navier-Stokes dans le cas bidimensionnel [13, 26] et généralisent à la dimension trois ceux que nous avons obtenus dans [10]. La clef de le preuve du théorème d'existence et d'unicité est une estimation L ∞ en temps et en espace de la température T obtenue en découplant l'équation de l'énergie (0.3) et l'équation de Darcy (0.2). Ensuite on applique une méthode de point fixe. La régularité en espace est liée à la structure particulière de l'ouvert Γ ainsi qu'à la nature des conditions limites. Cela étant acquis, les majorations uniformes en temps sont obtenues de façon assez classique. Nous étendons enfin à notre système les résultats obtenus par Foias et Temam [15] pour les équations de Navier-Stokes en dimension deux d'espace. Rappelons qu'il s'agit alors de montrer que la solution est parfaitement déterminée par ses valeurs prises sur un ensemble fini de points. Avant d'aller plus avant dans ce travail, signalons que l'on se ramène à des conditions aux limites homogènes en posant % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2% da9iabeI7aXjabgUcaRiaaigdacqGHsislcaGGOaGaamOEaiaac+ca% caWGObGaaiykaaaa!4004!\[T = \theta + 1 - (z/h)\]. Le système devient: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa% aaleaacaaIXaaabeaakmaaceaaeaqabeaadaWcaaqaaiabgkGi2kab% eI7aXbqaaiabgkGi2kaadshaaaGaeyOeI0IaeyiLdqKaeqiUdeNaey% 4kaSIaamOvaiabgwSixlabgEGirlabeI7aXjabgkHiTmaalaaabaGa% aGymaaqaaiaadIgaaaGaeqyXdu3aaSbaaSqaaiaaiodaaeqaaOGaey% ypa0JaaGimaaqaaiaadofadaWcaaqaaiabgkGi2kaadAfaaeaacqGH% ciITcaWG0baaaiabgUcaRiaadAfacqGHRaWkcqGHhis0cqaHapaCcq% GHRaWkcaWGsbGaamyyamaaCaaaleqabaGaaiOkaaaakiaadUgacqaH% 4oqCcqGH9aqpcaaIWaaabaGaaeizaiaabMgacaqG2bGaaeiiaiaadA% facqGH9aqpcaaIWaaabaGaamOvaiabgwSixlaad6gadaWgaaWcbaqe% feKCPfgBaGqbaiaa-XhacqqHtoWraeqaaOGaeyypa0JaaGimaaqaai% abeI7aXjaacIcacaWG4bGaaiilaiaadMhacaGGSaGaaGimaiaacMca% cqGH9aqpcqaH4oqCcaGGOaGaamiEaiaacYcacaWG5bGaaiilaiaadI% gacaGGPaGaeyypa0JaaGimaaqaamaalaaabaGaeyOaIyRaeqiUdeha% baGaeyOaIyRaamiEaaaacaGGOaGaaGimaiaacYcacaWG5bGaaiilai% aadQhacaGGPaGaeyypa0ZaaSaaaeaacqGHciITcqaH4oqCaeaacqGH% ciITcaWG4baaaiaacIcacaWGmbGaaiilaiaadMhacaGGSaGaamOEai% aacMcacqGH9aqpcaaIWaaabaWaaSaaaeaacqGHciITcqaH4oqCaeaa% cqGHciITcaWG5baaaiaacIcacaWG4bGaaiilaiaaicdacaGGSaGaam% OEaiaacMcacqGH9aqpdaWcaaqaaiabgkGi2kabeI7aXbqaaiabgkGi% 2kaadMhaaaGaaiikaiaadIhacaGGSaGaamiBaiaacYcacaWG6bGaai% ykaiabg2da9iaaicdaaaGaay5Eaaaaaa!B7C4!\[P_1 \left\{ \begin{gathered} \frac{{\partial \theta }}{{\partial t}} - \Delta \theta + V \cdot \nabla \theta - \frac{1}{h}\upsilon _3 = 0 \hfill \\ S\frac{{\partial V}}{{\partial t}} + V + \nabla \pi + Ra^* k\theta = 0 \hfill \\ {\text{div }}V = 0 \hfill \\ V \cdot n_{|\Gamma } = 0 \hfill \\ \theta (x,y,0) = \theta (x,y,h) = 0 \hfill \\ \frac{{\partial \theta }}{{\partial x}}(0,y,z) = \frac{{\partial \theta }}{{\partial x}}(L,y,z) = 0 \hfill \\ \frac{{\partial \theta }}{{\partial y}}(x,0,z) = \frac{{\partial \theta }}{{\partial y}}(x,l,z) = 0 \hfill \\ \end{gathered} \right.\]
    Notes: Abstract We discuss a system of partial differential equations which describes natural convection in a porous medium under a temperature gradient ∇T. In their most general form these equations can be written % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa% aaleaacaaIXaaabeaakmaaceaaeaqabeaacqGHiiIZdaWcaaqaaiab% gkGi2kabeg8aYbqaaiabgkGi2kaadshaaaGaey4kaSIaaeizaiaabM% gacaqG2bGaaeiiaiabeg8aYjaadAfacqGH9aqpcaaIWaaabaWaaSaa% aeaacqaHbpGCaeaacqGHiiIZaaWaaSaaaeaacqGHciITaeaacqGHci% ITcaWG0baaaiabgUcaRiaabEgacaqGYbGaaeyyaiaabsgacaqGGaGa% amiCaiabgkHiTiabeg8aYjaadEgacqGHRaWkcqaH8oqBcaWGlbWaaW% baaSqabeaacqGHsislcaaIXaaaaOGaaeiiaiaadAfacqGH9aqpcaaI% WaaabaWaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaaiaacIcacq% aHbpGCcaWGJbGaaiykamaaCaaaleqabaGaaiOkaaaakiaadsfacqGH% sislcaqGGaGaaeizaiaabMgacaqG2bGaaeiiaiaabU5adaahaaWcbe% qaaiaabQcaaaGccaqGNbGaaeOCaiaabggacaqGKbGaaeiiaiaadsfa% cqGHRaWkcaGGOaGaeqyWdiNaam4yaiaacMcadaWgaaWcbaGaamOzaa% qabaGccaWGwbGaaeiiaiabgwSixlabgEGirlaadsfacqGH9aqpcaaI% WaaabaGaeqyWdiNaeyypa0JaeqyWdi3aaSbaaSqaaiaadkhaaeqaaO% GaaiikaiaaigdacqGHsislcqaHXoqycaGGOaGaamivaiabgkHiTiaa% dsfadaWgaaWcbaGaamOCaaqabaGccaGGPaGaaiykaaaacaGL7baaaa% a!9527!\[P_1 \left\{ \begin{gathered} \in \frac{{\partial \rho }}{{\partial t}} + {\text{div }}\rho V = 0 \hfill \\ \frac{\rho }{ \in }\frac{\partial }{{\partial t}} + {\text{grad }}p - \rho g + \mu K^{ - 1} {\text{ }}V = 0 \hfill \\ \frac{\partial }{{\partial t}}(\rho c)^* T - {\text{ div \Lambda }}^{\text{*}} {\text{grad }}T + (\rho c)_f V{\text{ }} \cdot \nabla T = 0 \hfill \\ \rho = \rho _r (1 - \alpha (T - T_r )) \hfill \\ \end{gathered} \right.\] where ε represents the porosity, ρ is the fluid density, T is the temperature, μ is the dynamic viscosity, K and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4MdmaaCa% aaleqabaGaaeOkaaaaaaa!37E8!\[{\text{\Lambda }}^{\text{*}} \] are, respectively, the tensor of permeability and of thermal conductivity. The heat capacity of fluid (resp., solid) is denoted by (ρc) f (resp., (ρc) s ). Thus, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeikaiabeg% 8aYjaadogacaqGPaWaaWbaaSqabeaacaqGQaaaaOGaeyypa0Jaeyic% I4Saaiikaiabeg8aYjaadogacaGGPaWaaSbaaSqaaiaadAgaaeqaaO% Gaey4kaSIaaiikaiaaigdacaqGGaGaeyOeI0IaeyicI4Saaiykaiaa% cIcacqaHbpGCcaWGJbGaaiykaaaa!4C87!\[{\text{(}}\rho c{\text{)}}^{\text{*}} = \in (\rho c)_f + (1{\text{ }} - \in )(\rho c)\] represents the equivalent heat capacity. As is usual in convection problems, we simplify the model by adopting the Boussinesq approximation which consists of neglecting the density variations except in the ρg term, (cf., for instance, [6]). This well-known model has often been studied by physicists and numerical analysts, but ([3–5, 7, 8, 18, 24]), as far as we know, it seems that a theoretical approach has not yet been developed. We shall restrict our study to the case of a homogeneous isotropic medium filling a parallelepipedic cavity, one of the axis of which is colinear to the gravitational acceleration g. In dimensionless form, the system P 1 can be written % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa% aaleaacaaIXaaabeaakmaaceaaeaqabeaacaqGWaGaaeOlaiaabgda% caqGGaGaaeiiaiaabccacaqGKbGaaeyAaiaabAhacaqGGaGaamOvai% abg2da9iaaicdaaeaacaaIWaGaaiOlaiaaikdacaqGGaGaaeiiaiaa% bccacaWGtbWaaSaaaeaacqGHciITcaWGwbaabaGaeyOaIyRaamiDaa% aacqGHRaWkcaWGwbGaey4kaSIaae4zaiaabkhacaqGHbGaaeizaiaa% bccacaWGWbGaey4kaSIaamOuaiaadggadaahaaWcbeqaaiaacQcaaa% GccaWGRbGaamivaiabg2da9iaaicdaaeaacaaIWaGaaiOlaiaaioda% caqGGaGaaeiiaiaabccadaWcaaqaaiabgkGi2kaadsfaaeaacqGHci% ITcaWG0baaaiabgkHiTiabgs5aejaadsfacqGHRaWkcaqGGaGaamOv% aiaabccacaqGNbGaaeOCaiaabggacaqGKbGaaeiiaiaadsfacqGH9a% qpcaaIWaGaaiOlaaaacaGL7baaaaa!71EF!\[P_1 \left\{ \begin{gathered} {\text{0}}{\text{.1 div }}V = 0 \hfill \\ 0.2{\text{ }}S\frac{{\partial V}}{{\partial t}} + V + {\text{grad }}p + Ra^* kT = 0 \hfill \\ 0.3{\text{ }}\frac{{\partial T}}{{\partial t}} - \Delta T + {\text{ }}V{\text{ grad }}T = 0. \hfill \\ \end{gathered} \right.\] With boundary conditions in % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCLaey% ypa0Jaai4EaiaacIcacaWG4bGaaiilaiaabccacaWG5bGaaeilaiaa% bccacaWG6bGaaiykaiabgIGiolaac2facaaIWaGaaiilaiaabccaca% WGmbGaai4waerbbjxAHXgaiuaacaWFfrGaaiyxaiaaicdacaGGSaGa% aeiiaiaadYgacaGGBbGaa8xreiaac2facaaIWaGaaiilaiaabccaca% WGObGaai4waiaac2haaaa!54B3!\[\Omega = \{ (x,{\text{ }}y{\text{, }}z) \in ]0,{\text{ }}L[]0,{\text{ }}l[]0,{\text{ }}h[\} \]: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGub% GaaiikaiaadIhacaGGSaGaaeiiaiaadMhacaGGSaGaaeiiaiaabcda% caGGPaGaeyypa0JaaGymaiaacYcacaqGGaGaaeiiaiaabccacaqGGa% GaaeiiaiaadsfacaGGOaGaamiEaiaacYcacaqGGaGaamyEaiaacYca% caqGGaGaamiAaiaacMcacqGH9aqpcaaIWaGaaiilaaqaamacmc4caa% qaiWiGcWaJaAOaIyRaiWiGdsfaaeacmcOamWiGgkGi2kacmc4G4baa% aiaacIcacaaIWaGaaiilaiaabccacaWG5bGaaiilaiaabccacaWG6b% Gaaiykaiabg2da9maalaaabaGaeyOaIyRaamivaaqaaiabgkGi2kaa% dIhaaaGaaiikaiaadYeacaGGSaGaaeiiaiaadMhacaGGSaGaaeiiai% aadQhacaGGPaGaeyypa0ZaaSaaaeaacqGHciITcaWGubaabaGaeyOa% IyRaamiEaaaacaGGOaGaamiEaiaacYcacaqGGaGaamiBaiaacYcaca% qGGaGaamOEaiaacMcacqGH9aqpcaaIWaGaaiilaaqaaiaadAfacqGH% flY1caqGGaGaamOBamaaBaaaleaaruqqYLwySbacfaGaa8hFaiabgk% Gi2kabfM6axbqabaGccqGH9aqpcaaIWaaaaaa!8886!\[\begin{gathered} T(x,{\text{ }}y,{\text{ 0}}) = 1,{\text{ }}T(x,{\text{ }}y,{\text{ }}h) = 0, \hfill \\ \frac{{\partial T}}{{\partial x}}(0,{\text{ }}y,{\text{ }}z) = \frac{{\partial T}}{{\partial x}}(L,{\text{ }}y,{\text{ }}z) = \frac{{\partial T}}{{\partial x}}(x,{\text{ }}l,{\text{ }}z) = 0, \hfill \\ V \cdot {\text{ }}n_{|\partial \Omega } = 0 \hfill \\ \end{gathered} \], where n is the outward normal unit sector to Γ. The dimensionless vector k stands for the unit gravitational acceleration vector and Ra * is a parameter which is proportional to the constraint acting on the medium. S is a small parameter (S≤min{(106, 10-6 Ra *)}) which will eventually vanish to zero. In an earlier work [10, 11], we studied the two-dimensional case for both the evolution and stationary problem and showed the existence uniqueness and regularity of the evolution problem. However, we did show that several stationary solutions exist. We were then led to study the asymptotic behaviour of the solution of the evolution problem. To make this study more general we decided to work in three-dimensional space. This article contains the preliminary results to a somewhat fine study to an asymptotic behaviour. More precisely, we establish a regularity theorem and give a uniform estimation in time of second-order space derivatives of the so
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...