Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Mycorrhiza 1 (1992), S. 83-89 
    ISSN: 1432-1890
    Keywords: Fine roots ; Physiology ; Morphology ; Demography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Mycorrhizae play an important role in regulating patterns of energy and nutrient flux in terrestrial ecosystems. To conceptualize this role I develop the theory behind a simple index of the efficiency of soil resource acquisition by plant root systems (E). The morphological, physiological and demographic characteristics of mycorrhizae that define E appear to vary with environment and with plant community composition. This theory is elaborated with examples drawn from forest ecology literature. Some inconsistencies among observations of fine root dynamics are particularly revealing: (1) belowground carbon allocation vs soil fertility; (2) causes of root mortality; (3) root longevity vs decomposition rates. A comprehensive theory of mycorrhizal and ecosystem dynamics must await resolution of these inconsistencies and better quantitative information on mycorrhizal features affecting E.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Blum et al. reply We identified apatite as an important reservoir of calcium in the soil horizons termed Bs and C at Hubbard Brook experimental forest (HBEF) and suggested that it could exceed the size of the soil-exchange pool. Apatite has high calcium-to-strontium (Ca/Sr) ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The depletion of calcium in forest ecosystems of the northeastern USA is thought to be a consequence of acidic deposition and to be at present restricting the recovery of forest and aquatic systems now that acidic deposition itself is declining. This depletion of calcium has been inferred from ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Understanding how exogenous and endogenous factors control the distribution, production and mortality of fine roots is fundamental to assessing the implications of global change, yet our knowledge of control over fine root dynamics remains rudimentary. To improve understanding of these processes, the present study developed regression relationships between environmental variables and fine root dynamics within a northern hardwood forest in New Hampshire, USA, which was experimentally manipulated with a snow removal treatment. Fine roots (〈 1 mm diameter) were observed using minirhizotrons for 2 years in sugar maple and yellow birch stands and analyzed in relation to temperature, water and nutrient availability. Fine root dynamics at this site fluctuated seasonally, with growth and mortality peaking during warmer months. Monthly fine root production was strongly associated with mean monthly air temperature and neither soil moisture nor nutrient availability added additional predictive power to this relationship. This relationship exhibited a seasonal temperature hysteresis, which was altered by snow removal treatment. These results suggest that both exogenous and endogenous cues may be important in controlling fine root growth in this system. Proportional fine root mortality was directly associated with mean monthly soil temperature, and proportional fine root mortality during the over-winter interval was strongly related to whether the soil froze. The strong relationship between fine root production and air temperature reported herein contrasts with findings from some hardwood forest sites and indicates that controls on fine root dynamics vary geographically. Future research must more clearly distinguish between endogenous and exogenous control over fine root dynamics in various ecosystems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 11 (2005), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Despite its importance in the terrestrial C cycle rhizosphere carbon flux (RCF) has rarely been measured for intact root–soil systems. We measured RCF for 8-year-old saplings of sugar maple (Acer saccharum) and yellow birch (Betula allegheniensis) collected from the Hubbard Brook Experimental Forest (HBEF), NH and transplanted into pots with native soil horizons intact. Five saplings of each species were pulse labeled with 13CO2 at ambient CO2 concentrations for 4–6 h, and the 13C label was chased through rhizosphere and bulk soil pools in organic and mineral horizons for 7 days. We hypothesized yellow birch roots would supply more labile C to the rhizosphere than sugar maple roots based on the presumed greater C requirements of ectomycorrhizal roots. We observed appearance of the label in rhizosphere soil of both species within the first 24 h, and a striking difference between species in the timing of 13C release to soil. In sugar maple, peak concentration of the label appeared 1 day after labeling and declined over time whereas in birch the label increased in concentration over the 7-day chase period. The sum of root and rhizomicrobial respiration in the pots was 19% and 26% of total soil respiration in sugar maple and yellow birch, respectively. Our estimate of the total amount of RCF released by roots was 6.9–7.1% of assimilated C in sugar maple and 11.2–13.0% of assimilated C in yellow birch. These fluxes extrapolate to 55–57 and 90–104 g C m−2 yr−1 from sugar maple and yellow birch roots, respectively. These results suggest RCF from both arbuscular mycorrhizal and ectomycorrhizal roots represents a substantial flux of C to soil in northern hardwood forests with important implications for soil microbial activity, nutrient availability and C storage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Environmental management 23 (1999), S. 441-452 
    ISSN: 1432-1009
    Keywords: KEY WORDS: Tropical watersheds; Sedimentation; Reservoirs; Erosion control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Keywords: Key words Mangrove species zonation ; Sulfate reduction ; Pyrite formation ; Phosphorus ; Decomposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We examined soil porewater concentrations of sulfate, alkalinity, phosphorus, nitrogen, and dissolved organic carbon and solid phase concentrations of pyrite in relation to mangrove species distributions along a 3.1-km-long transect that traversed a 47.1-km2 mangrove forest in the Dominican Republic. Iron, phosphorus, and sulfur dynamics are closely coupled to the activity of sulfate-reducing bacteria, the primary decomposers in anoxic soils of mangrove ecosystems. Patterns in the chemistry data suggested that sulfate reduction rates and storage of reduced sulfur were greater in the inland basin forest dominated by Laguncularia racemosa than the Rhizophora mangle dominated forest of the lower tidal region. The distribution of Laguncularia was significantly correlated with concentrations of total phosphorus (r= 0.99) and dissolved organic carbon (r= 0.86), alkalinity (r= 0.60), and the extent of sulfate depletion (r= 0.77) in the soil porewater and soil pyrite concentrations (r= 0.72) across the tidal gradient. Leaf tissue chemistry of Laguncularia was characterized by lower C:N and C:P ratios that could fuel the higher rates of decomposition in the Laguncularia-dominated forest. We suggest that a plant-soil-microbial feedback contributes to the spatial patterning of vegetation and soil variables across the intertidal zone of many mangrove forest communities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-515X
    Keywords: acidity ; bicarbonate ; forest soils ; leaching ; metal cations ; nutrient cycling ; organic anions ; sulfate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Concentrations of the principal inorganic and organic solutes in the soil root-zone were measured in six contrasting lodgepole pine (Pinus contorta ssp.latifolia) forest ecosystems for five years (1979–1983). Consistent temporal changes in the principal inorganic solutes (Ca, Mg, K, Na, SO4, Cl) were observed in all the forest stands and years of study: high concentrations at the initiation of snowmelt in the spring were followed by rapid declines to rather constant values in the mid to late stages of snowmelt. Except for K, concentrations of these solutes differed significantly between sites and between years. Sulfate was the principal mobile anion in the root-zone soil solutions, but contributions of bicarbonate and organic anions also were important. The pH of root-zone solutions was relatively high (6.0), did not change significantly as snowmelt proceeded, and was significantly lower in high-clay soils. No consistent trends in bicarbonate alkalinity were observed and soil atmosphere CO2 concentrations were only about 10 to 20 times above atmospheric levels, peaking at the end of the snowmelt interval. Concurrent changes in the concentrations of dissolved organic carbon, non-volatile acid-neutralizing capacity, and total Al and Fe indicated that these soil-forming metals were transported vertically in the soil as organic complexes. Precipitation of these complexes was more rapid and more complete in the soils with high clay content than in the coarser soils. Moreover, organic anions comprised up to 30% of the total anionic charge in the coarse-textured soils but less than 10% in the fine soils. Little seasonal or spatial variation of inorganic N and P concentrations was observed in root-zone solutions, probably as a result of high biotic demand for these limiting nutrients. Flux of N and P in these ecosystems was predominately via organic forms so that losses of these nutrients was strongly linked to the mobility of dissolved organic carbon. However, a two-fold increase in the organic N:P and C:P ratios was observed during passage of melt water from the forest floor to mineral soil, evidence of more rapid mineralization of organic P.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-515X
    Keywords: acid deposition ; nutrient cycling ; proton budgets ; red spruce
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract As part of an experimental study of air pollution effects on tree growth and health, we combined process studies with an ecosystem approach to evaluate the effects of acidic deposition on soil acidification, nutrient cycling and proton fluxes in miniature red spruce ecosystems. Ninety red spruce saplings were transplanted into 1-m diameter pots containing reconstructed soil profiles and exposed to simulated acid rain treatments of pH 3.1, 4.1 and 5.1 for four consecutive growing seasons. All the principal fluxes of the major elements were measured. During the first year of treatments, the disturbance associated with the transplanting of the experimental trees masked any treatment effects by stimulating N mineralization rates and consequent high N03 − cation, and H+ flux through the soil profile. In subsequent years, leaching of base cations and labile Al was accelerated in the most intensive acid treatment and corresponding declines in soil pH and exchangeable pools of Ca and Mg and increases in exchangeable Al concentrations were observed in the organic horizon. Leaching of Ca2+ and Mg2+ also was significantly higher in the pH 4.1 than in the pH 5.1 treatment. Flux of Ca from foliage and soil was increased in response to strong acid loading and root uptake increased to compensate for foliar Ca losses. In contrast, K cycling was dominated by root uptake and internal cycling and was relatively insensitive to strong acid inputs. Cation leaching induced by acidic deposition was responsible for the majority of H+ flux in the pH 3.1 treatment in the organic soil horizon whereas root uptake accounted for most of the H+ flux in the pH 4.1 and 5.1 treatments. Although no measurable effects on tree nutrition or health were observed, base cation leaching was significantly accelerated by acidic deposition, even at levels below that observed in the eastern U.S., warranting continued concern about acid deposition effects on the soil base status of forested ecosystems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 32 (1996), S. 221-244 
    ISSN: 1573-515X
    Keywords: forest floor ; lime ; nitrogen mineralization ; nitrification ; pH ; uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The forest floor was expected to play a major role in determining the total ecosystem response to watershed liming because of its high concentration of nutrients and its high level of activity. Net N mineralization and net nitrification were estimated in a field survey using the buried-bag approach. In a laboratory incubation experiment, forest floor humus was mixed with 6 doses of lime to determine the sensitivity of N mineralization and nitrification to lime dose. Forest floor microcosms with and without live tree roots were used to calculate a N budget for the system. The pH of the forest floor increased from 3.6 to 4.9 in the Oe and to 4.0 in the Oa two years after liming. The extractable ammonium pool in both the field survey and microcosm study was substantially smaller after liming and was probably a result of the 36% to 55% lower net N mineralization rate in limed plots than in reference plots. The laboratory incubation results agreed with the field survey results and further demonstrated that at higher lime doses (pH 5 to 6), N mineralization increased above controls. Net nitrification in limed humus in both the buried bags and laboratory incubation was as much as three times higher than controls, which could explain why nitrate leaching in limed microcosms was greater than in control microcosms. However, nitrate leaching from microcosms with live. roots was not affected by liming, suggesting that roots in the forest floor may prevent excess nitrate leaching. Reductions in N mineralization had no effect on N leaching or N uptake, but reduced the extractable ammonium pool.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...