Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Neural computing & applications 9 (2000), S. 172-180 
    ISSN: 1433-3058
    Keywords: Keywords. Film thickness control; Hybrid networks modelling; LPCVD reactor; Temperature control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: In this paper, a new approach of LPCVD reactor modelling and control is presented, based on the use of neural networks. We first present the development of a hybrid networks model of the reactor. The objective is to provide a simulation model which can be used to compute online the film thickness on each wafer. In the second section, the thermal control of a LPCVD reactor is studied. The objective is to develop a multivariable controller to control a space- and time-varying temperature profile inside the reactor. A neural network is designed using a methodology based on process inverse dynamics modelling. Good control results have been obtained when tracking space-time temperature profiles inside the LPCVD reactor pilot plant. Finally, global software is elaborated to achieve film thickness control in an experimental LPCVD reactor pilot plant, in order to get a defined and uniform deposition thickness on the wafers all along the reactor. Experimental results are presented which confirm the efficiency of the optimal control strategy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...