Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 11 (1969), S. 927-943 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The design of a continuous column fermentor with a multiple staging effect is described. The column is divided into four compartments by horizontal perforated plates and is provided with a central agitator shaft driving an impeller in each compartment. A tube at the center of each plate forms a liquid seal around the shaft and also acts as a “downcomer.”The fermentor is normally operated with counter-current flow of gas and medium. Fresh medium is added to the top stage and product is withdrawn from the bottom.The effect of plate and agitator design on fermentor performance was studied in terms of factor such as oxygen transfer rate, gas holdup, and interstage mixing. By proper choice of the design parameters, the fermentor was made to approximate a perfect four-stage cascade in terms of reactor performance.Preliminary experiments were performed with air-water systems, but a more realistic picture of fermentor performance was obtained in experience involving propagation of Escherichia coli. Data for business and substrate concentrations in each stage confirmed the staging effect of the apparatus. The fermentor operated in a stable manner for periods of more than two weeks.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 12 (1970), S. 465-482 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A method for analyzing the reactor behavior of a continuous, multistage tower fermentor is described. A model consisting of a system of interconnected, ideal subreactors is set up on the basis of the fermentor's configuration and flow pattern. The residence time distribution curve is used to test the validity of the model and the relative quantities of flow streams and regions in the model are determined. A least-square fitting procedure between measured and calculated distribution curves is used to identify the proper model. The application of this method to real cultivation conditions is also discussed. Using this approach, the multistage tower fermentor is shown to be equivalent to a cascade of four perfectly mixed tanks with a backtracking stream between stages. The extent of backflow under various conditions has also been determined.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 10 (1968), S. 233-237 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A method for the determination of total heat generation in a fermentation tank and overall heat-transfer coefficient at the cooling surface is outlined. These data, which are essential for the design of cooling systems, are measured during the actual fermentation by dynamic analysis of controlled temperature variations. Each experiment consists of two stages: one in which cooling is cut off, and one in which cooling is constant. The necessary temperature variation is so limited that, the course of the fermentation is not affected.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...