Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 2950-2953 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: It is shown that nonparallel density and temperature gradients can produce magnetic fields in dusty plasmas. Spontaneously created magnetic fields can be maintained if there exists plasma vorticity. In order to understand this phenomena, a self-consistent dusty plasma equilibrium model is constructed by employing a kinetic description and invoking the Hamiltonian approach. Stationary nonlinear dusty plasma equilibria contain specific profiles for the plasma number density, the plasma current, and the magnetic field. The relevance of this investigation to low-temperature laboratory dusty and space plasmas is discussed. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 167-172 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The linear and nonlinear properties of drift-ballooning modes in the presence of an equilibrium electric field and stationary charged dust grains are examined. It is found that the presence of these two contribute to the stability of the ballooning mode. Furthermore, the nonlinear coupling between finite amplitude drift-ballooning modes gives rise to different types of coherent vortex structures, which can affect the transport properties of an inhomogeneous magnetized plasma. The relevance of the investigation to laboratory and astrophysical plasmas is discussed. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 4129-4129 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 2947-2951 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A set of coupled nonlinear equations for dispersive Alfvén waves (DAWs) in nonuniform magnetoplasmas with two-ion species is derived by employing a multifluid model. The DAW frequency is assumed to lie between the gyrofrequencies of the light and heavy ion impurities. In the linear limit, a local dispersion relation (LDR) is derived and analyzed. The LDR admits a new type of DAW in two-ion plasmas. Furthermore, it is found that stationary solutions of the nonlinear mode coupling equations in two-ion plasmas can be represented in the form of different types of coherent vortex structures. The relevance of our investigation to space and laboratory plasmas is pointed out. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 616-624 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: By using the hydrodynamic electron response with fixed (kinetic) ions along with Poisson's equation as well as Ampère's law, a system of nonlinear equations for low-frequency (in comparison with the electron gyrofrequency) long-(short-) wavelength electromagnetic waves in a nonuniform resistive magnetoplasma has been derived. The plasma contains equilibrium density gradient and sheared equilibrium plasma flows. In the linear limit, local dispersion relations are obtained and analyzed. It is found that sheared equilibrium flows can cause instability of Alfvén-like electromagnetic waves even in the absence of a density gradient. Furthermore, it is shown that possible stationary solutions of the nonlinear equations without dissipation can be represented in the form of various types of vortices. On the other hand, the temporal behavior of our nonlinear dissipative systems without the equilibrium density inhomogeneity can be described by the generalized Lorenz equations which admit chaotic trajectories. The density inhomogeneity may lead to even qualitative changes in the chaotic dynamics. The results of our investigation should be useful in understanding the linear and nonlinear properties of nonthermal electromagnetic waves in space and laboratory plasmas. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 2846-2848 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The modulational instability of random phase Langmuir waves in an unmagnetized collisional plasma is investigated. The growth rate of the instability is presented in several interesting limiting cases. The relevance of this investigation to space and laboratory plasmas is pointed out. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...