Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Entomology 47 (2002), S. 773-815 
    ISSN: 0066-4170
    Quelle: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Thema: Biologie
    Notizen: Abstract Sympatric speciation is the splitting of one evolutionary lineage into two without the occurrence of geographic isolation. The concept has been intimately tied to entomology since the 1860s, when Benjamin Walsh proposed that many host-specific phytophagous insects originate by shifting and adapting to new host plant species. If true, sympatric speciation would have tremendous implications for our understanding of species and their origins, biodiversity (25-40% of all animals are thought to be phytophagous specialists), insect-plant coevolution, community ecology, phylogenetics, and systematics, as well as practical significance for the management of insect pests. During much of the twentieth century sympatric speciation was viewed as much less plausible than geographic (allopatric) speciation. However, empirical field studies, laboratory experiments, developments in population genetics theory, and phylogenetic and biogeographic data have all recently combined to shed a more favorable light on the process. We review the evidence for sympatric speciation via host shifting for phytophagous insects and propose a set of testable predictions for distinguishing geographic mode (allopatric versus sympatric) of divergence. Our conclusion is that sympatric speciation is a viable hypothesis. We highlight areas where more thorough testing is needed to move sympatric speciation into the realm of accepted scientific theory.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-1939
    Schlagwort(e): Host races ; Intra- and interspecific competition ; Sympatric speciation ; Apple maggot fly
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Intra- and interspecific resource competition are potentially important factors affecting host plant use by phytophagous insects. In particular, escape from competitors could mediate a successful host shift by compensating for decreased feeding performance on a new plant. Here, we examine the question of host plant-dependent competition for apple (Malus pumila)- and hawthorn (Crataegus mollis)-infesting larvae of the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae) at a field site near Grant, Michigan, USA. Interspecific competition from tortricid (Cydia pomonella, Grapholita prunivora, and Grapholita packardi) and agonoxenid (subfamily Blastodacninae) caterpillars and a curculionid weevil (Conotrachelus crataegi) was much stronger for R. pomonella larvae infesting the ancestral host hawthorn than the derived host apple. Egg to pupal survivorship was estimated as 52.8% for fly larvae infesting hawthorn fruit without caterpillars and weevils compared to only 27.3% for larvae in harthorns with interspecific insects. Survivorship was essentially the same between fly larvae infesting apples in the presence (44.8%) or absence (42.6%) of interspecific insects. Intraspecific competition among maggots was also stronger in hawthorns than apples. The order or time that a larva exited a hawthorn fruit was a significant determinant of its pupal mass, with earlier emerging larvae being heavier than later emerging larvae. This was not the case for larvae in apples, as the order or time that a larva exited an apple fruit had relatively little influence on its pupal mass. Our findings suggest that decreased performance related to host plant chemistry/nutrition may restrict host range expansion and race formation in R. pomonella to those plants where biotic/ecological factors (i.e. escape from competitors and parasitoids) adequately balance the survivorship equation. This balance permits stable fly populations to persist on novel plants, setting the stage for the evolution of host specialization under certain mitigating conditions (e.g. when mating is host specific and host-associated fitness trade-offs exist).
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    [s.l.] : Nature Publishing Group
    Nature 336 (1988), S. 61-64 
    ISSN: 1476-4687
    Quelle: Nature Archives 1869 - 2009
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Notizen: [Auszug] Six allozyme loci, aconitase-2 (Acon-2), malic enzyme (Me), mannose phosphate isomerase (Mpi), aspartate amino-trans-ferase (Aat-2), NADH-diaphorase-2 (Dia-2) and beta-hydroxy acid dehydrogenase (Had), showed significant allele frequency differences between flies collected from sympatric hawthorn ...
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    [s.l.] : Macmillian Magazines Ltd.
    Nature 407 (2000), S. 739-742 
    ISSN: 1476-4687
    Quelle: Nature Archives 1869 - 2009
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Notizen: [Auszug] In On the Origin of Species, Darwin proposed that natural selection had a fundamental role in speciation. But this view receded during the Modern Synthesis when allopatric (geographic) models of speciation were integrated with genetic studies of hybrid sterility and inviability. The ...
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    ISSN: 1423-0445
    Schlagwort(e): Key words. Rhagoletis pomonella (Diptera: Tephritidae) – apple maggot fly – sympatric speciation – olfaction – host fruit odor – electroantennogram
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary. Domestic apple (Malus pumila)- and hawthorn (Crataegus sp.)-infesting races of Rhagoletis pomonella, Walsh (Diptera: Tephritidae) provide an excellent model to examine the role that host plant specificity plays during sympatric speciation (i.e., divergence in the absence of geographic isolation). Previous work has shown that these races differ in their propensities to accept apple and hawthorn fruits in behavioral choice assays, and that this discrimination translates into "host fidelity" in the field (i.e., apple flies tend to mate on and oviposit into apples and hawthorn flies on hawthorns). ¶We present the results of a study examining possible physiological factors contributing to host choice differences in R. pomonella. We tested whether apple and hawthorn flies differ in their electroantennogram (EAG) responses to biologically relevant volatile compounds emitted from apples and hawthorns. Significant differences were found in the relative EAG responses of apple and hawthorn flies to host fruit compounds at five of six paired study sites across the eastern United States. The geographic pattern of EAG variation was complex, however, with local populations of apple and hawthorn flies tending to be more similar to one another than to flies of the same race at distant sites. This pattern was largely due to EAG responses for several compounds showing longitudinal or latitudinal clines, the latitudinal clines being similar to those observed for allozyme loci in the host races. We also found evidence for sex-related differences, as males tended to have higher mean EAG responses to compounds than females. Host-associated differences were therefore nested within geographic and sex-related differentiation in R. pomonella.¶Further behavioral studies are needed to distinguish whether the EAG differences are responsible for, as opposed to being a consequence of, host-plant fidelity and adaptation. Crosses are also required to establish a genetic basis for the EAG responses, although we did find significant correlations between EAG scores for several compounds and the allozymes NADH-Diaphorase-2 and Hydroxyacid dehydrogenase at one of the study sites. Questions therefore remain concerning the evolutionary significance of the EAG response differences between apple and hawthorn fly races. Nevertheless, these differences raise the possibility that antennal responses to fruit-related volatile compounds contribute to host plant discrimination in R. pomonella. Regardless, the EAG responses represent another set of traits, in addition to diapause/eclosion time phenotypes and allozyme frequencies, differing between apple and hawthorn host races of R. pomonella.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 1570-7458
    Schlagwort(e): apple maggot fly ; sympatric speciation ; negative genetic fitness trade-offs ; host plant-associated selection ; host races ; allozymes ; diapause
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The apple maggot fly, Rhagoletis pomonella, Walsh (Diptera: Tephritidae), provides a unique opportunity to address the issue of host-related fitness trade-offs for phytophagous insects. Rhagoletis pomonella has been controversial since the 1860's when Benjamin Walsh cited the fly's shift from hawthorn (Crataegus spp.) to apple (Malus pumila) as an example of an incipient sympatric speciation event. Allozyme and mark-release-recapture studies have subsequently confirmed the status of apple and hawthorn flies as partially reproductively isolated and genetically differentiated ‘host races’, the hypothesized initial stage in sympatric divergence. Here, we review the ecological and genetic evidence for host-plant mediated selection in R. pomonella. We reach the following three major conclusions: First, although developmental timing is not everything, it is a good deal of the story. Differences in the fruiting phenologies of apple and hawthorn trees exert different selection pressures on the diapause and eclosion time characteristics of the host races. In particular, the ∼3-week earlier mean fruiting phenology of apples in eastern North America appears to select for a slower rate of metabolism or deeper pupal diapause in apple than hawthorn flies. Second, host-related fitness trade-offs for R. pomonella may not be due to disruptive selection affecting any one specific life-history stage. Rather, it is the sum total of directional selection pressures acting across different life-stages that generates divergent selection on apple and hawthorn flies. For example, selection favors the alleles Me 100, Acon-2 95 and Mpi 37 (or linked genes) in the larval stage in both host races. However, these same alleles are disfavored in the pupal stage to follow, where they correlate with early adult eclosion, and by inference premature diapause termination. Because apple trees fruit an average of ∼3 weeks earlier than hawthorn trees, this counter-balancing selection is stronger on apple-fly pupae. The net result is that the balance of selective forces is different between apple and hawthorn flies, helping to maintain the genetic integrity of the host races in sympatry in the face of gene flow. Finally, natural R. pomonella populations harbor a good deal of genetic variation for development-related traits. This variation allows fly populations to rapidly respond to temporal vagaries in local environmental conditions across years, as well as to broad-scale geographic differences that exist across the range of the species. Perhaps most importantly, this variation gives R. pomonella the flexibility to explore and adapt to novel plants. Taken together, our results underscore how difficult it can be to document host plant-related fitness trade-offs for phytophagous insects due to the need to consider details of the entire life-cycle of a phytophagous insect. Our findings also show how reproductive isolation can arise as a by-product of host-associated adaptation in insects, a central theme for models of sympatric speciation via host shifts.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Springer
    Entomologia experimentalis et applicata 51 (1989), S. 113-123 
    ISSN: 1570-7458
    Schlagwort(e): Rhagoletis pomonella ; apple maggot fly ; Rhagoletis mendax ; blueberry maggot fly ; sibling species ; allozymes ; sympatric speciation
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Beschreibung / Inhaltsverzeichnis: Résumé R. pomonella Walsh and R. mendax Curran sont respectivement deux mouches très nuisibles aux pommes et aux myrtilles du N E des USA. La position taxonomique de ces mouches comme espèces distinctes a été longtemps mise en doute par suite de leur grande ressemblance morphologique, de l'important chevauchement de leurs répartitions et de leur interfécondité au laboratoire. L'électophorèse sur gel d'amidon de protéines solubles a été utilisé pour établir l'importance de la différenciation génétique et du flux génique entre R. mendax contaminant des myrtilles et R. pomonella contaminant des pommiers et des aubépines. R. mendax et R. pomonella se sont révélées des espèces jumelles car, à l'exception de 11 alolozymes sur 29, chaque espèce possédait des allèles spécifiques. Les données concernant 3 populations sympatriques de mouches des myrtilles et des pommes du Michigan ont montré que des mouches ne s'hybrident pas dans la nature et n'ont fourni aucune indication sur une introgression de gènes nucléaires. Des différences concernant la découverte de hôtes sont impliquées comme obstacles prézygotiques importants au flux génique entre R. pomonella et R. mendax; ce résultat conforte l'hypothèse d'une divergence sympatrique de ces mouches.
    Notizen: Abstract Rhagoletis pomonella (Walsh) and R. mendax (Curran) (Diptera: Tephritidae) are major economic pests of apple and blueberry fruits, respectively, in eastern North America. The taxonomic status of these flies as distinct species has been in dispute because of their close morphological similarity, broadly overlapping geographic distributions and inter-fertility in laboratory crosses. Starch gel electrophoresis of soluble proteins was performed to establish the extent of genetic differentiation and levels of gene flow between blueberry infesting populations of R. mendax and apple and hawthorn infesting populations of R. pomonella. R. mendax and R. pomonella were found to be genetically distinct sibling species as eleven out of total of twenty-nine allozymes surveyed possessed species specific alleles. Data from three sympatric apple and blueberry fly populations in Michigan indicated that these flies do not hybridize in nature and gave no evidence for nuclear gene introgression. Differences in host plant recognition were implicated as important pre-mating barriers to gene flow between R. pomonella and R. mendax; a result supporting a sympatric mode of divergence for these flies.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Springer
    Entomologia experimentalis et applicata 69 (1993), S. 117-135 
    ISSN: 1570-7458
    Schlagwort(e): Rhagoletis pomonella ; apple maggot fly ; allozymes ; host races ; allochronic isolation ; adult eclosion ; sympatric speciation
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract True fruit flies belonging to theRhagoletis pomonella (Walsh) sibling species complex have been proposed to speciate sympatrically by shifting and adapting to new host plants. Here, we report the results from a series of ecological and genetic experiments conducted at a study site near Grant, Michigan, U.S.A., aimed at clarifying the relationship between host specialization and reproductive isolation for these flies. Our findings indicate that apple (Malus pumila) and hawthorn (Crataegus mollis) infesting populations ofR. pomonella are partially allochronically isolated. Differences in the timing of adult eclosion account for part of the allochronic divergence, as apple adults emerge approximately ten days earlier than hawthorn flies in the field. Genetic analyses across different life history stages of the fly show that adults do not randomly move between apple and hawthorn trees, but trend to attack the same species of plant that they infested as larvae. Estimates of interhost migration from the allozyme data suggest that from 2.8 to 10% of the apple population is of hawthorn origin and that over 20% of the hawthorn population is of apple origin. The length and quality of the growing season appear to affect the genetic composition of the host races, as allele frequencies in the hawthorn population are correlated with ambient temperature and rainfall during the spring of the preceding year. Finally, allele frequencies for six allozyme loci displaying host associated differentiation also show significant linear regressions with the timing of adult eclosion within both races. These regressions establish a link between allozyme loci displaying inter-host differentiation and a developmental trait (adult eclosion) responsible for partially isolating the races. The slopes of the regressions are paradoxical, however, as they suggest that apple adults should eclose later, not earlier, than hawthorn flies. We conclude by discussing potential resolutions to the eclosion time paradox.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    ISSN: 1570-7458
    Schlagwort(e): Rhagoletis pomonella ; Apple Maggot Fly ; Rhagoletis zephyria ; Snowberry maggot ; mitochondrial DNA ; allozymes ; introgression ; hybridization ; ancestral polymorphism ; sympatric speciation
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract True fruit flies belonging to the Rhagoletis pomonella (Diptera:Tephritidae) sibling species complex possess several attributes consistent with a history of sympatric divergence via host plant shifts. Here, we investigate whether hybridization and genetic introgression is occurring between two members of the group, Rhagoletis pomonella (Walsh), whose primary hosts are domestic apples (Malus pumila) and hawthorns (Crataegus spp., and R. zephyria (Snow) whose host is snowberries (Symphoricarpos spp.). These flies are important because they appear to be at a transition stage between taxa reproductively isolated solely on the basis of host plant-related adaptations and those that have evolved additional non-host dependent sterility and inviability. Observing extensive hybridization and introgression between R. pomonella and R. zephyria would have major repercussions for current models of sympatric speciation. In a survey of allozyme and mitochondrial DNA (mtDNA) variation for 1105 flies collected throughout the northern United States we found two results suggesting that low level hybridization occurs between R. pomonella and R. zephyria. (1) Two flies reared from snowberries and one fly reared from hawthoms had genotypes indicative of them being R. pomonella and R. zephyria, respectively. Rhagoletis pomonella and R. zephyria adults may therefore occasionally frequent each others host plant, providing the opportunity for hybridization. (2) Four flies collected from hawthorns and one from snowberries had genotypes that made them likely to be F1 hybrids. Likelihood analysis revealed the data were also consistent with an hypothesis of shared ancestral alleles (i.e., the pattern of genetic variation could also be explained by R. pomonella and R. zephyria sharing alleles/haplotypes whose origins date to a common ancestor). We estimated that, in the absence of interspecific mating, random assortment of genes within R. pomonella and R. zephyria populations would produce an average of 5.4 flies with genotypes suggesting they were F1 hybrids – a number equivalent to the 5 putative F1 hybrids observed in the study. Our results therefore underscore the difficulty in distinguishing between hypotheses of low level introgression and shared ancestral polymorphism. But even if hybridization is occurring, the data suggest that it is happening at a very low and probably evolutionarily insignificant level (perhaps 0.09% per generation), consistent with sympatric speciation theory. Future tests are discussed that could help resolve the hybridization issue for R. pomonella and R. zephyria.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...