Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Parietal cortex ; Reaching Instructed-delay activity ; Work space ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The activity of single neurons was recorded in area 5 while monkeys made parallel arm movements within different parts of space in an instructed-delay reaching task. In this task: (1) extrinsic variables, such as the direction of movement, were dissociated from intrinsic ones, such as the joint configuration used to perform the movements; and (2) the early neural events related to the presentation of the visual stimulus concerning movement direction were dissociated in time from the later events linked to the execution of movement. Under these experimental conditions, cell activity in area 5 changed so that the population of preferred direction vectors of parietal neurons rotated in space in a way which predicted the rotation of the arm necessary to perform the task. This rotation occurred both during the “instructed-delay time,” when the monkey waited for the “go-signal,” and during the time interval surrounding the onset of movement. This suggests that reaching to visual targets in area 5 is coded by a mechanism combining somatic and visually derived information within a shoulder- or body-centered coordinate system and that instructed-delay time activity in area 5 reflects not only the composition of the direction signal for reaching but also the spatial configuration of the arm.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Key words Parietal cortex ; Frontal cortex ; Learning ; Neural network ; Visually guided reaching
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  In the last few years, anatomical and physiological studies have provided new insights into the organization of the parieto-frontal network underlying visually guided arm-reaching movements in at least three domains. (1) Network architecture. It has been shown that the different classes of neurons encoding information relevant to reaching are not confined within individual cortical areas, but are common to different areas, which are generally linked by reciprocal association connections. (2) Representation of information. There is evidence suggesting that reach-related populations of neurons do not encode relevant parameters within pure sensory or motor ”reference frames”, but rather combine them within hybrid dimensions. (3) Visuomotor transformation. It has been proposed that the computation of motor commands for reaching occurs as a simultaneous recruitment of discrete populations of neurons sharing similar properties in different cortical areas, rather than as a serial process from vision to movement, engaging different areas at different times. The goal of this paper was to link experimental (neurophysiological and neuroanatomical) and computational aspects within an integrated framework to illustrate how different neuronal populations in the parieto-frontal network operate a collective and distributed computation for reaching. In this framework, all dynamic (tuning, combinatorial, computational) properties of units are determined by their location relative to three main functional axes of the network, the visual-to-somatic, position-direction, and sensory-motor axis. The visual-to-somatic axis is defined by gradients of activity symmetrical to the central sulcus and distributed over both frontal and parietal cortices. At least four sets of reach-related signals (retinal, gaze, arm position/movement direction, muscle output) are represented along this axis. This architecture defines informational domains where neurons combine different inputs. The position-direction axis is identified by the regular distribution of information over large populations of neurons processing both positional and directional signals (concerning the arm, gaze, visual stimuli, etc.) Therefore, the activity of gaze- and arm-related neurons can represent virtual three-dimensional (3D) pathways for gaze shifts or hand movement. Virtual 3D pathways are thus defined by a combination of directional and positional information. The sensory-motor axis is defined by neurons displaying different temporal relationships with the different reach-related signals, such as target presentation, preparation for intended arm movement, onset of movements, etc. These properties reflect the computation performed by local networks, which are formed by two types of processing units: matching and condition units. Matching units relate different neural representations of virtual 3D pathways for gaze or hand, and can predict motor commands and their sensory consequences. Depending on the units involved, different matching operations can be learned in the network, resulting in the acquisition of different visuo-motor transformations, such as those underlying reaching to foveated targets, reaching to extrafoveal targets, and visual tracking of hand movement trajectory. Condition units link these matching operations to reinforcement contingencies and therefore can shape the collective neural recruitment along the three axes of the network. This will result in a progressive match of retinal, gaze, arm, and muscle signals suitable for moving the hand toward the target.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 9 (1997), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The activity of single neurons was studied in parietal area 7m while monkeys performed an instructed-delay reaching task to visual targets under normal light conditions and in darkness. The task was aimed at assessing the influence of vision of hand position on the neural activity of 7m related either to static posture and movement of the hand or to eye position in the orbit. The results show the existence of preparatory, movement-related and postural activity for the control of reaching, all of which are strongly modulated by vision. The activity of many 7m neurons, otherwise insensitive to pure visual stimuli, seems to reflect complex interactions between gaze angle and hand position in the visual field.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 97 (1993), S. 361-365 
    ISSN: 1432-1106
    Keywords: Visuomotor integration ; Parietal and frontal lobes ; Corticocortical connectivity ; Arm movements ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The cortical anatomical substrates by which visual information may influence the frontal areas controlling reaching movements to visual targets were studied in monkeys. A reaching task was employed to characterize the arm-related regions of the frontal lobe. Injections of retrograde tracers into these physiologically defined cortical fields revealed a gradient of parallel corticocortical pathways originating in the superior parietal lobule and impinging upon different frontal regions. These results support the hypothesis that the superior parietal lobule can supply the frontal motor and premotor areas not only with the proprioceptive information but also with the visual input required for the control of reaching.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1106
    Keywords: Premotor cortex ; Arm movement ; Movement direction ; Coordinate system ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The activity of 156 neurons was recorded in the premotor cortex (Weinrich and Wise 1982) and in an adjoining rostral region of area 6 (area 6 DR; Barbas and Pandya 1987) while monkeys made visually-guided arm movements of similar direction within different parts of space. The activity of individual neurons varied most for a given preferred direction of movement within each part of space. These neurons (152/156, 97.4%) were labeled as directional. The spatial orientation of their preferred directions shifted in space to “follow” the rotation of the shoulder joint necessary to bring the arm into the different parts of the work-space. These results suggest that the cortical areas studied represent arm movement direction within a coordinate system rotating with the arm and where signals about the movement direction relate to the motor plan through a simple invariant relationship, that between cell preferred direction and arm orientation in space.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...