Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Erscheinungszeitraum
  • 1
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 96 (1996), S. 0 
    ISSN: 1399-3054
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: Sunflower (Helianthus annuus L.) seedlings were grown in aeroponic chambers which allowed for easy access to and easy harvesting of undamaged roots. In different portions of these roots we followed the rate of ethylene production, levels of 1-aminocyclopropane-1-carboxylic acid (ACC), N-malonyl-ACC and ACC oxidase mRNA and activity of ACC oxidase. ACC oxidase was measured with an in vitro assay, ACC and N-malonyl-ACC by selected ion monitoring gas chromatography-mass spectrometry. Ethylene production was highest in the tip of the root and tower in the middle and basal (part nearest the hypocotyl) portions of the root. The levels of ACC and ACC oxidase mRNA mirrored the levels of ethylene production. The lowest quantities of N-malonyl-ACC were found in the root tips. Upon gentle transfer of seedlings from an aeroponic system to treatment tubes, ACC content transiently increased; the greatest increase occurred in the tips. This brief rise in ACC content was not correlated with an increase in ethylene production. ACC oxidase activity was lowest in the tip and higher in the middle and base; the opposite of the pattern of ethylene production. Treating the seedlings with ACC produced a rapid rise in ACC content and ethylene production and inhibited root elongation. ACC oxidase activity was not induced by ACC treatment.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 98 (1996), S. 0 
    ISSN: 1399-3054
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: Both carbon dioxide and ethylene can affect the rate of root elongation. Carbon dioxide can also promote ethylene biosynthesis by enhancing the activity of 1-aminocylopropane-1-carboxylic acid (ACC) oxidase. Since the amount of CO2 in the soil air, and in the atmosphere surrounding roots held in enclosed containers, is known to vary widely, we investigated the effects of varying CO2 concentrations on ethylene production by excised and intact sunflower roots (Helianthus annuus L. cv. Dahlgren 131). Seedlings were germinated in an aeroponic system in which the roots hung freely in a chamber and were misted with nutrient solution. This allowed for treatment, manipulation and harvest of undamaged and minimally disturbed roots. While exposure of excised roots to 0.5% CO2 could produce a small increase in ethylene production (compared to roots in ambient CO2), CO2 concentrations of 2% and above always inhibited ethylene evolution. This inhibition of ethylene production by CO2 was attributed to a reduction in the availability of ACC: however, elevated CO2 had no effect on ACC oxidase activity. ACC levels in excised roots were depressed by CO2 at a concentration of 2% (as compared to ambient CO2), but n-malonyl-ACC (MACC) levels were not affected. Treating intact roots with 2% CO2 inhibited elongation by over 50%. Maximum inhibition of elongation occurred 1 h after the CO2 treatment began, but elongation rates returned to untreated values by 6 h. Supplying these same intact roots with 2% CO2 did not alter ethylene evolution. Thus, in excised sunflower roots 2% CO2 treatment reduces ethylene evolution by lowering the availability of ACC. Intact seedlings respond differently in that 2% CO2 does not affect ethylene production in roots. These intact roots also temporarily exhibit a significantly reduced rate of elongation in response to 2% CO2.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...