Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 75 (1989), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: During starch degradation in intact isolated chloroplasts from Chlamydomonas reinhardtii gas exchange was studied with a mass spectrometer. Oxygen uptake by intact chloroplasts in the dark never exceeded 1.5% of the starch degradation rate [maximum 15 nmol O2 (mg Chl)−1 h−1 consumed. 1 000 nmol glucose (mg Chl)−1h−1 degraded]. Evolution of CO2 under aerobic conditions [9.8–28 nmol (mg Chl)−1 h−1] was stimulated by addition of 0.1–0.5 mM oxaloacetate [393–425 nmol CO2 (mg Chl)−1 h−1]. Pyridoxal phosphate (5 mM) inhibited starch degradation by more than 80%, but had no effect on O2 uptake. Starch degradation rates and CO2 evolution did not differ under acrobic and anaerobic conditions. Increasing Pi in the reaction medium from 0.5 mM to 5.0 mM stimulated starch degradation by 230 and 260% under aerobic and anaerobic conditions, respectively. A rapid autooxidation of reduced ferredoxin was observed in a reconstituted system consisting of purified Chlamydomonas ferredoxin, purified Chlamydomonas NADP-ferredoxin oxidoreductase (EC 1.6.7.1) and NADPH. Addition of isolated thylakoids from C. reinhardtii did not affect the rate of O2 uptake. Our results clearly indicate the absence of any oxygen requirement during starch degradation in isolated chloroplasts.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 8 (1986), S. 267-274 
    ISSN: 1573-5079
    Keywords: amino acids ; nitrate reductase ; organic solutes ; pool sizes ; sugars ; water stress ; Zea mays (L.)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The activity of nitrate reductase and the pool sizes of some amino acids and some sugars were measured in relation to the leaf water potential (ψ) of maize leaves. The activity of nitrate reductase was severely inhibited in water-stressed maize leaves. This was not due to substrate shortage or the presence of an inhibitor at reduced leaf water potential. While the typical proteinogenic amino acids valine, tyrosine, leucine and isoleucine were almost undetectable in the leaves of the control plants, their concentrations markedly increased with declining ψ, thus indicating protein degradation. The concentrations of serine, glycine and glutamate increased upon water stress, their total amount in severely stressed leaves ranging 5- to 6-fold higher than the total amount of valine, tyrosine, leucine and isoleucine at this stage of water deficit. The pool sizes of glucose, fructose and sucrose decreased in relation to decreasing ψ. The total amount of organic solutes remained almost constant at least up to a ψ of approx.—1.0 MPa and then dropped to about 50% when ψ reached −1.25 MPa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...