Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Analog integrated circuits and signal processing 14 (1997), S. 29-39 
    ISSN: 1573-1979
    Keywords: interconnect ; CMOS inverter model ; interconnect delay ; power dissipation ; short-circuit power
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology
    Notes: Abstract A delay and power model of a CMOS inverter driving aresistive-capacitive load is presented. The model is derivedfrom Sakurai‘s alpha-power law and exhibits good accuracy. Themodel can be used to design and analyze those CMOS invertersthat drive a large RC load when considering bothspeed and power. Expressions are provided for estimating thepropagation delay and transition time which exhibit less than27% discrepancy from SPICE for a wide variety of RCloads. Expressions are also provided for modeling the short-circuitpower dissipation of a CMOS inverter driving a resistive-capacitiveinterconnect line which are accurate to within 15% of SPICEfor most practical loads.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Analog integrated circuits and signal processing 14 (1997), S. 5-8 
    ISSN: 1573-1979
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Analog integrated circuits and signal processing 14 (1997), S. 53-58 
    ISSN: 1573-1979
    Keywords: RC trees ; interconnect impedance ; ramp input response
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology
    Notes: Abstract Closed form expressions are presented to accuratelydescribe the delay characteristics of RC tree networks.The Penfield-Rubinstein-Horowitz approach to estimating the stepfunction response of RC trees has been extendedto consider ramp inputs. This result improves timing accuracyby considering the shape of the input waveform driving each individualinterconnect tree while maintaining computational simplicityfor use in the automated timing analysis of complex VLSI circuits.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    The journal of VLSI signal processing systems for signal, image, and video technology 16 (1997), S. 113-116 
    ISSN: 1573-109X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    The journal of VLSI signal processing systems for signal, image, and video technology 16 (1997), S. 149-161 
    ISSN: 1573-109X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology
    Notes: Abstract An integrated top-down design system is presented in this paper for synthesizing clock distribution networks for application to synchronous digital systems. The timing behavior of a synchronous digital circuit is obtained from the register transfer level description of the circuit, and used to determine a non-zero clock skew schedule which reduces the clock period as compared to zero skew-based approaches. Concurrently, the permissible range of clock skew for each local data path is calculated to determine the maximum allowed variation of the scheduled clock skew such that no synchronization failures occur. The choice of clock skew values considers several design objectives, such as minimizing the effects of process parameter variations, imposing a zero clock skew constraint among the input and output registers, and constraining the permissible range of each local data path to a minimum value. The clock skew schedule and the worst case variation of the primary process parameters are used to determine the hierarchical topology of the clock distribution network, defining the number of levels and branches of the clock tree and the delay associated with each branch. The delay of each branch of the clock tree is physically implemented with distributed buffers targeted in CMOS technology using a circuit model that integrates short-channel devices with the signal waveform shape and the characteristics of the clock tree interconnect. A bottom-up approach for calculating the worst case variation of the clock skew due to process parameter variations is integrated with the top-down synthesis system. Thus, the local clock skews and a clock distribution network are obtained which are more tolerant to process parameter variations. This methodology and related algorithms have been demonstrated on several MCNC/ISCAS-89 benchmark circuits. Increases in system-wide clock frequency of up to 43% as compared with zero clock skew implementations are shown. Furthermore, examples of clock distribution networks that exploit intentional localized clock skew are presented which are tolerant to process parameter variations with worst case clock skew variations of up to 30%.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    The journal of VLSI signal processing systems for signal, image, and video technology 16 (1997), S. 247-276 
    ISSN: 1573-109X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology
    Notes: Abstract Rapid Single Flux Quantum (RSFQ) logic is a digital circuit technology based on superconductors that has emerged as a possible alternative to advanced semiconductor technologies for large scale ultra-high speed, very low power digital applications. Timing of RSFQ circuits at frequencies of tens to hundreds of gigahertz is a challenging and still unresolved problem. Despite the many fundamental differences between RSFQ and semi- conductor logic at the device and at the circuit level, timing of large scale digital circuits in both technologies is principally governed by the same rules and constraints. Therefore, RSFQ offers a new perspective on the timing of ultra-high speed digital circuits. This paper is intended as a comprehensive review of RSFQ timing, from the viewpoint of the principles, concepts, and language developed for semiconductor VLSI. It includes RSFQ clocking schemes, both synchronous and asynchronous, which have been adapted from semiconductor design methodologies as well as those developed specifically for RSFQ logic. The primary features of these synchronization schemes, including timing equations, are presented and compared. In many circuit topologies of current medium to large scale RSFQ circuits, single-phase synchronous clocking outperforms asynchronous schemes in speed, device/area overhead, and simplicity of the design procedure. Synchronous clocking of RSFQ circuits at multigigahertz frequencies requires the application of non-standard design techniques such as pipelined clocking and intentional non-zero clock skew. Even with these techniques, there exist difficulties which arise from the deleterious effects of process variations on circuit yield and performance. As a result, alternative synchronization techniques, including but not limited to asynchronous timing, should be considered for certain circuit topologies. A synchronous two-phase clocking scheme for RSFQ circuits of arbitrary complexity is introduced, which for critical circuit topologies offers advantages over previous synchronous and asynchronous schemes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...