Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 4121-4125 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Modes have been observed near the frequency of the second Alfvén gap during off-axis H-minority heating experiments in the circular cross-section Tokamak Fusion Test Reactor. The observation of these modes is surprising in that the second gap, which is generally opened with ellipticity, is expected to be small, of order (r/R)2. A model is proposed in which the second gap is opened by the fast ion beta, which is shown to be able to introduce mode coupling, much as toroidal effects introduce mode coupling for Toroidal Alfvén Eigenmodes (TAE). With the low inferred energy of the fast ion tail (30–50 keV), the fast ion bounce resonance condition is assumed to drive the modes. The modes are seen with and without accompanying TAE mode activity. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 1433-1436 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Toroidicity-induced Alfvén eigenmode (TAE) stability in the National Spherical Torus Experiment (NSTX) [S. M. Kaye, M. Ono, Y.-K. M. Peng et al., Fusion Technol. 36, 16 (1999)] is analyzed using the improved NOVA-K code [N. N. Gorelenkov, C. Z. Cheng, and G. Y. Fu, Phys. Plasmas 6, 2802 (1999)], which includes finite orbit width and Larmor radius effects and is able to predict the saturation amplitude for the mode using the quasilinear theory. A broad spectrum of unstable global TAEs with different toroidal mode numbers is predicted. Due to the strong poloidal field and the presence of the magnetic well in NSTX, better particle confinement in the presence of TAEs in comparison with tokamaks is illustrated making use of the ORBIT code [R. B. White and M. S. Chance, Phys. Fluids 27, 2455 (1984)]. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 1809-1815 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Recent stability results of external kink modes and vertical modes in compact stellarators are presented. The vertical mode is found to be stabilized by externally generated poloidal flux. A simple stability criterion is derived in the limit of large aspect ratio and constant current density. For a wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by Fi=(κ2−κ)/(κ2+1), where κ is the axisymmetric elongation and Fi is the fraction of the external rotational transform. A systematic parameter study shows that the external kink mode in a quasiaxisymmetric stellarator (QAS) can be stabilized at high beta (∼5%) without a conducting wall by magnetic shear via three-dimensional (3D) shaping. It is found that external kinks are driven by both parallel current and pressure gradient. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch–Schluter current. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: High-beta, low-aspect-ratio ("compact") stellarators are promising solutions to the problem of developing a magnetic plasma configuration for magnetic fusion power plants that can be sustained in steady state without disrupting. These concepts combine features of stellarators and advanced tokamaks and have aspect ratios similar to those of tokamaks (2–4). They are based on computed plasma configurations that are shaped in three dimensions to provide desired stability and transport properties. Experiments are planned as part of a program to develop this concept. A β=4% quasi-axisymmetric plasma configuration has been evaluated for the National Compact Stellarator Experiment (NCSX). It has a substantial bootstrap current and is shaped to stabilize ballooning, external kink, vertical, and neoclassical tearing modes without feedback or close-fitting conductors. Quasi-omnigeneous plasma configurations stable to ballooning modes at β=4% have been evaluated for the Quasi-Omnigeneous Stellarator (QOS) experiment. These equilibria have relatively low bootstrap currents and are insensitive to changes in beta. Coil configurations have been calculated that reconstruct these plasma configurations, preserving their important physics properties. Theory- and experiment-based confinement analyses are used to evaluate the technical capabilities needed to reach target plasma conditions. The physics basis for these complementary experiments is described. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 1079-1080 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An analytic stability criterion is derived for the vertical mode in a large aspect ratio stellarator with uniform current density profile. The effects of vacuum magnetic field generated by helical coils are shown to be stabilizing due to enhancement of field line bending energy. For a wall at infinite distance from the plasma, the amount of external poloidal flux needed for stabilization is given by f=(κ2−κ)/(κ2+1), where κ is the axisymmetric elongation and f is the ratio of vacuum rotational transform to the total transform. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 2802-2807 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effects of finite drift orbit width (FOW) and Larmor radius (FLR) of fast particles on the stability of low-n toroidicity-induced Alfvén eigenmodes (TAE) are studied. The formulation is based on the solution of the low frequency gyrokinetic equation (ω(very-much-less-than)ωc, where ωc is particle cyclotron frequency). A quadratic form has been derived in terms of invariant variables; energy E, magnetic moment μ, and toroidal angular momentum Pcursive-phi. The growth rate of the TAE is computed perturbatively using numerical averaging over the fast particle drift orbit. This new computational capability improves the NOVA-K code [G. Y. Fu, C. Z. Cheng, and K. L. Wong, Phys. Fluids B 5, 4040 (1994)] which included FOW effects in the growth rate calculation based on small radial orbit width approximation. The new NOVA-K version has been benchmarked for different regimes of particle TAE excitation. It is shown that both FOW and FLR effects are typically stabilizing; the TAE growth rate can be reduced by as much as a factor of 2 for tokamak fusion test reactor supershots [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)]. However, FOW may be destabilizing for the global modes, which are localized at the plasma edge. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Purely alpha-particle-driven toroidal Alfvén eigenmodes (TAEs) with toroidal mode numbers n=1–6 have been observed in deuterium–tritium (D–T) plasmas on the tokamak fusion test reactor [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)]. The appearance of mode activity following termination of neutral beam injection in plasmas with q(0)〉1 is generally consistent with theoretical predictions of TAE stability [G. Y. Fu et al. Phys. Plasmas 3, 4036 (1996)]. Internal reflectometer measurements of TAE activity is compared with theoretical calculations of the radial mode structure. Core localization of the modes to the region of reduced central magnetic shear is confirmed, however the mode structure can deviate significantly from theoretical estimates. The peak measured TAE amplitude of δn/n∼10−4 at r/a∼0.3−0.4 corresponds to δB/B∼10−5, while δB/B∼10−8 is measured at the plasma edge. Enhanced alpha particle loss associated with TAE activity has not been observed. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The toroidal Alfvén eigenmodes (TAE) are calculated to be stable in the presently obtained deuterium–tritium plasmas in the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Res. 26, 11 (1984)]. However, the core localized TAE mode can exist and is less stable than the global TAE modes. The beam ion Landau damping and the radiative damping are the two main stabilizing mechanisms in the present calculation. In future deuterium–tritium experiments, the alpha-driven TAE modes are predicted to occur with a weakly reversed shear profile. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 1029-1031 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The core-localized toroidicity-induced Alfvén eigenmode (TAE) is shown to exist at finite plasma pressure due to finite aspect ratio effects in tokamak plasma. The new critical beta for the existence of the TAE mode is given by α≈3ε+2s2, where ε=r/R is the inverse aspect ratio, s is the magnetic shear and α=−Rq2dβ/dr is the normalized pressure gradient. In contrast, previous critical α is given by α≈s2. In the limit of s(very-much-less-than)(square root of)r/R, the new critical α is greatly enhanced by the finite aspect ratio effects. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 4284-4291 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The toroidal Alfvén eigenmodes (TAE) in the Tokamak Fusion Test Reactor [K. Young et al., Plasma Phys. Controlled Fusion 26, 11 (1984)] deuterium–tritium plasmas are analyzed using the NOVA-K code [C. Z. Cheng, Phys. Rep. 211, 1 (1992)]. The theoretical results are compared with the experimental measurements in detail. In most cases, the theory agrees with the observations in terms of mode frequency, mode structure and mode stability. However, one mode with toroidal mode number n=2 is observed to be poloidally localized on the high field side of the magnetic axis with a mode frequency substantially below the TAE frequency. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...