Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1434-601X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Using the atomic beam magnetic resonance method we observed Ramsey patterns of strongly field dependent transitions of Li, Na and Rb at high magnetic fields. The structures were of high symmetry, with half widths of the central minimums between 20 kHz and 6 kHz. In a first experiment we determined theg J -factor ratiog J (6Li)/g J (7Li)=1+3(70)·10−10.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 315 (1984), S. 1-11 
    ISSN: 1434-601X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Using the atomic beam magnetic resonance method, precision measurements of the hyperfine structure and Zeeman interactions have been performed in the ground state 4f 126s 2 3 H 6 of167Er. The experimental data were analyzed using an effective operator parametrized in the space of states of the ground state multiplet. It yielded eight effective hyperfine structure and Zeeman interaction constants which served to calculate the seven hyperfine separations of the ground state. The results are: $$\begin{gathered} 2F 2F' v_{FF'} (MHz) \hfill \\ 5 7 - 354.371 9409 (27) \hfill \\ 7 9 - 2{\text{78}}{\text{.231}} {\text{8263(14)}} \hfill \\ {\text{9}} 11 - 69.050 7785 (4) \hfill \\ 11 13 + 302.735 3731(12) \hfill \\ 13 15 + 866.691 3871(10) \hfill \\ 15 17 + 1,652.383 5154 (6) \hfill \\ 17 19 + 2,689.380 8050(10) \hfill \\ \end{gathered}$$ From the effective Zeeman interaction constants it was possible to determine an improvedg I -value, uncorrected for atomic diamagnetism: $$ g_I = + 0.086 775 (19) \cdot 10^{ - 3}$$ Furthermore a hexadecapole interaction corresponding to a diagonal hexadecapole interaction constant $$A_4 = - 16 (10) Hz$$ could be established which is of the order of magnitude expected from Coulomb excitation experiments as well as theoretical calculations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 274 (1975), S. 195-201 
    ISSN: 1434-601X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Using the atomic beam magnetic resonance method, the five hyperfine structure separations in the 4f 3 6s 2 4I9/2 ground state of 59 141 Pr have been measured. The results are:F F′ E FF′ * /h (MHz) 7 6 6477.913423(17) 6 5 5556.359848 (6) 5 4 4633.023306 (2) 4 3 3708.201146 (5) 3 2 2782.190601(15) From these quantities, the multipole interaction constantsA k,k=1, 2, 3, 4 between the nucleus and the electron shell have been calculated.A 4 especially then served to give the following limit for the intrinsic hexadecapole moment: ¦Q 40¦〈0.4eb 2. Furthermore, theg J -factors of the4 I multiplet have been measured at magnetic fields of 300 Oe. The results are:g J(4 I 9/2)=0.7310371(15)g J(4 I 11/2)=0.9651476(20)g J(4 I 13/2)=1.1063197(40)g J(4 I 15/2)=1.197963 (30) Small corrections due to perturbations by neighbouring fine structure levels are included.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...