Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 13 (1975), S. 1309-1324 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The radiation-induced polymerization of styrene adsorbed on silica gel, white carbon, silicic acid anhydride, zeolite, and activated alumina was carried out to elucidate the effect of properties of inorganic substances on the polymerization. The rate of adsorbed state polymerization on these inorganic substances was very fast in comparison with that of bulk-state polymerization. The amount of unextractable polymer depends on the specific surface area and chemical compositions of these inorganic substances. Inorganic substances which contain aluminum as a component element are more likely to be grafted than those which consist of SiO2 alone. The molecular weight and molecular weight distribution of unextractable polymer and extractable polymer differ from one another in each inorganic substance. In case of silicic acid anhydride, unextractable polymer has smaller molecular weight than extractable polymer. These results suggest that unextractable polymer cannot be extracted due to chemical bonds with the inorganic surface.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The radiation-induced polymerization of methyl methacrylate (MMA) absorbed on such inorganic substances as silica gel, white carbon, silicic acid anhydride, zeolite, and activated alumina was carried out to compare with the case of styrene. The rate of radiation-induced polymerization adsorbed on inorganic substances was high compared with that of radiation-induced bulk state polymerization, as was the case with styrene. Inorganic substrates which contain aluminum as a component element are more likely to be grafted than those which consist of SiO2 alone, as with styrene. The molecular weight distribution of unextractable polymer and extractable polymer differs, depending on the type of inorganic substance. Experiments by a preirradiation method were carried out in case of silica gel, white carbon, and silicic acid anhydride. GPC spectra of the polymer obtained were different from those of polymer formed by the simultaneous irradiation method. It appears that all the unextractable polymer is grafted to the inorganic surface with chemical bond.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In order to elucidate the mechanism of radiation-induced polymerization of styrene adsorbed on silica gel, the effect of p-benzoquinone and ammonia was investigated. The high molecular weight GPC peaks of both graft polymers and homopolymers decreased with increasing p-benzoquinone concentration, while the low molecular weight peaks of both graft copolymers and homopolymers decreased with increasing ammonia concentration. The results indicate that the high molecular weight peaks of both graft and homopolymers are formed as a result of a radical mechanism and that the low molecular weight peaks of both types of polymers are formed by a cationic mechanism. In formation of both graft polymers and homopolymers both radical and cationic polymerization take place at the same time.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 14 (1976), S. 1031-1041 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: To elucidate the reaction mechanism of radiation-induced polymerization of methyl methacrylate adsorbed on silica gel, the temperature dependence and effects of acetone and pyridine were investigated. It was found that even at -78°C the polymerization rate was quite fast. The amounts of high molecular weight GPC peaks of both graft polymers and homopolymers increased with increasing irradiation temperature. The activation energy of the adsorbed state polymerization was low compared with that of bulk polymerization. The low molecular weight peaks of homopolymers decreased with acetone addition but were almost unaffected by pyridine. The low molecular weight peaks of homopolymers were thus polymerized by an anionic mechanism. In the methyl methacrylate-silica gel system both radical and anionic polymerization take place at the same time in formation of graft polymers and homopolymers. A reaction mechanism for the methyl methacrylate-silica gel system was proposed based on the results obtained to date.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 14 (1976), S. 23-36 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In order to elucidate the mechanism of radiation-induced polymerization of styrene adsorbed on silica gel, the effects of dose rate and irradiation temperature were studied in detail. Monomer conversion increased with increasing dose rate and temperature. At the same conversion, the percent grafting increased with decreasing dose rate and also with increasing temperature. In general, GPC spectra of graft polymers and homopolymers showed two peaks; the ratio of the two peaks changed with dose rate and irradiation temperature. The dose-rate exponents of the polymerization rate of four peaks were different from each other. The activation energies of radical polymerization and cationic polymerization were about 2.6 kcal/mole and 0 kcal/mole, respectively. Based on the results obtained, a reaction mechansim is proposed.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 14 (1976), S. 275-286 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In order to elucidate the mechanism of radiation-induced polymerization of methyl methacrylate adsorbed on silica gel, the effects of p-benzoquinone addition and dose rate were studied in detail. Most of the polymerization is inhibited by p-benzoquinone at levels above 10-2 mole/l. The GPC spectra of both graft polymers and homopolymers show two peaks. The high molecular weight material appears to have been formed by polymerization by a radical mechanism, because these peaks decrease as p-benzoquinone concentration increases; on the other hand, their low molecular weight polymers seem to be products of an ionic polymerization mechanism because those peaks are almost not affected by p-benzoquinone. The four GPC peaks differ in dose rate dependences of their polymerization rate. The dose-rate exponents of polymerization rate were obtained for the four GPC peaks. The behavior of the low molecular weight peaks of graft polymers and homopolymers were quite different, suggesting that the polymers differ considerably in formation mechanism.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 14 (1976), S. 2183-2192 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Aerosil is silica having a purity which is very high compared with that of silica gel and having, unlike silica gel, no micropores. To investigate the effects of impurities and micropores on the radiation-induced polymerization of styrene and methyl methacrylate adsorbed on silica gel, the radiation-induced polymerization of styrene and methyl methacrylate adsorbed on Aerosil was carried out. The results of both the styrene-Aerosil 300 system and the methyl methacrylate-Aerosil 300 system were similar to those of the styrene-silica gel and methyl methacrylate-silica gel systems, respectively. This suggests that in the radiation-induced polymerization of both styrene-silica gel and methyl methacrylate-silica gel systems the impurity and the presence of micropores have almost no effects on the reaction mechanism. The effect of aluminum as an impurity was investigated on the styrene-Aerosil MOX 170 system. It was found that aluminum accelerated the cationic polymerization.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 14 (1976), S. 2193-2205 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Preirradiation polymerization of the styrene-silica gel system was studied in detail. Both graft polymers and homopolymers have bimodal GPC spectra. High molecular weight peaks were formed in a radical mechanism and the low molecular weight peaks were formed in a cationic mechanism as same as those in the simultaneous irradiation polymerization. The rate of formation of the low molecular weight peaks was very high compared with that of the high molecular weight peaks. Monomer conversion and percent grafting leveled off at about 1-2 Mrad. Radiation dose dependence of the four peaks were different from each other. Monomer conversion and percent grafting decreased as the preheating temperature of silica gel increased. The amount of the low molecular weight peaks of graft polymers depended on the number of silanol groups, as in the case of the simultaneous irradiation polymerization. A reaction mechanism for the preirradiation polymerization is proposed based on the results obtained.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 14 (1976), S. 1743-1751 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: To investigate the reaction mechanism of radiation-induced polymerization of styrene adsorbed on silica gel, the effect of pretreatment temperature of silica gel was studied. Preheating of silica gel was carried out at 200, 500, and 800°C. The number of silanol groups of silica gel surface decreased as preheating temperature increased. The rate of polymerization on the silica gel preheated at 500°C was faster than that at 200°C, but the polymerization rate on the silica gel preheated at 800°C was the lowest. These results suggest that rate of polymerization on the silica gel is affected by the conditions of silica gel surface such as the number of silanol groups and the pore size. At the same monomer conversion, percent grafting decreased as preheating temperature of silica gel increased. The GPC spectra of both graft polymers and homopolymers have two peaks at all preheating temperatures. The monomer conversion of low molecular weight peaks of graft polymers decreased as preheating temperature of silica gel increased. This result suggests that there is a probability that the grafting sites of low molecular weight peaks of graft polymers somehow interact with silanol groups.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 15 (1977), S. 65-72 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: To elucidate the reaction mechanism of radiation-induced polymerization of the styrene - silica gel system, the influence of H2O as adsorbed water and inhibitor of cationic polymerization was investigated by two methods. Monomer conversion decreased as H2O increased. In general, percent grafting decreased as H2O increased, but the presence of a small amount of H2O increased the percent grafting. Grafting at 16 Mrad has a maximum value at a water content of about 0.2%. This seems to be due to two effects of H2O: percent grafting increases due to restraint of cationic polymerization by H2O, but the percent grafting decreases due to adsorption water which interrupts the contact of styrene with silica gel. In GPC spectra, the low molecular weight peaks of both graft polymers and homopolymers decreased when H2O was added. The GPC results suggest that the number of positive holes which initiate cationic polymerization is very large.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...