Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 237 (2004), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The triplet linear plasmids pDHL1/2/3 from the salt-tolerant yeast Debaryomyces hansenii TK are localized in the cytoplasm and characterized by a unique feature that they require environmental stressors (0.3 M NaCl or solutes such as sorbitol with equivalent osmolarity) for stable replication and maintenance. The degree of osmolarity dependence of pDHLs was greatly affected by growth temperature of the host cells: the stability of pDHLs was maintained in the absence of osmolarity in cells growing at 25 °C, and required osmorarity equivalent to 0.3–1.0 M NaCl on shifting to 30–35 °C. Although to less extent, similar osmolarity dependence at high temperatures was observed with another system of D. hansenii linear plasmids. Short-term conditioning of cells to heat or high osmolarity resulted in significant improvement in the plasmid stability, suggesting possible involvement of stress proteins and/or high glycerol level in the stabilization process.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Linear plasmids ; Osmophilic ; Replication ; Debaryomyces hansenii
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Three novel linear plasmids, pDHL1 (8.4 kb), pDHL2 (9.2 kb) and pDHL3 (15.0 kb), were discovered in the halophilic (salt-tolerant) yeast Debaryomyces hansenii. Exonuclease treatment indicated that all three plasmids were blocked at their 5′ ends, presumably, by analogy with most other eukaryotic linear plasmids which involved protein attachment. The Debaryomyces plasmids were entirely cured simply by growing cells in normal culture medium, but were stably maintained in culture medium containing salts, sorbitol or glycerol at suitable concentrations. This suggested that the pDHL plasmids required an osmotic pressure for stable replication and maintenance. The Debaryomyces yeast secreted a killer toxin against various yeasts species. Toxin activity was demonstrated only in the presence of salts such as NaCl or KCl, but this killer phenotype was not associated with the pDHL plasmids. Analysis of the plasmid-curing pattern suggested that pDHL3 may play a key role in the replication of the Debaryomyces plasmids. Southern hybridization showed that an extensive homology exists between specific regions of pDHL1 and pDHL2, whereas pDHL3 is unique.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0983
    Keywords: Plasmid migration ; UCS-promoter ; Telomere ; Ty
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Kluyveromyces linear plasmids, pGKL1 and pGKL2, carrying terminal protein (TP), are located in the cytoplasm and have a unique gene expression system with the plasmid-specific promoter element termed UCS, which functions only in the cytoplasm. In this study we have developed an in vivo assay system in Saccharomyces cerevisiae which enables the detection of a rare migration of the yeast cytoplasmic plasmid to the nucleus, using a pGKL1-derived cytoplasmic linear plasmid pCLU1. pCLU1 had both the UCS-fused LEU2 gene (a cytoplasmic marker) and the native URA3 gene (a nuclear marker) and therefore its cytoplasmic-nucleo localized could be determined by the phenotypic analysis of the marker. The nuclearly migrated plasmids were often detected as linear plasmids having the telomere sequence of the host yeast at both ends, although circular plasmids were also found. The circular form was produced by the terminal fusion of pCLU1. Insertion of a Ty element into a nuclearly migrated plasmid was observed, allowing the ROAM-regulated expression of the adjacent nuclearly silent UCS-fused LEU2 gene. The nuclearly located plasmids, whether linear or circular, were less sensitive to UV-mediated curing than pGKL and pCLU1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 26 (1994), S. 369-373 
    ISSN: 1432-0983
    Keywords: Yeast linear plasmids ; UV curing ; Photoreactivation ; Repair
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Kluyveromyces linear plasmids pGKL 1 and pGKL2, encoding killer activity, were efficiently cured by UV irradiation. This event was investigated in more detail by the use of the terminal protein (TP)-associated cytoplasmic linear plasmids, pJKL1 and pRKL2, with a selectable marker LEU2. This observation was compared with the UV effect on the nuclear plasmids pLS1 (telomere-associated linear form) and YCp121 (centromere-integrated circular form), indicating that the UV hypersensitivity was specific to the cytoplasmic plasmids. Using rad4 and wildtype strains of S. cerevisiae, both pJKL1 and the nuclear plasmids were found to respond not only to photoreactivation repair but also to excision repair of UV-induced DNA damage. Thus these DNA repair systems were functional for both the nuclear and cytoplasmic plasmids in yeast, and it was suggested that the UV hypersensitivity of cytoplasmic plasmids might have been caused by a defect in other repair systems or in the TP-primed replication. Possibly TP-associated Debaryomyces linear plasmids were also UV hypersensitive.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0749-503X
    Keywords: DNA polymerase ; Debaryomyces hansenii ; hairpin loop ; UCS ; pDHL linear plasmids ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Both the linear plasmids, pDHL1 (8·4 kb) and pDHL2 (9·2 kb), of Debaryomyces hansenii TK require the presence of a third linear plasmid pDHL3 (15·0 kb) in the same host cell for their replication. A 3·5 kb Bam HI-PstI fragment of pDHL1 strongly hybridized by Southern analysis to the 3·5 kb NcoI-AccI fragment of pDHL2, suggesting the importance of this conserved region in the replication of the two smaller pDHL plasmids. The 4·2 kb pDHL1 fragment containing the above hybridized region was cloned and sequenced. The results showed that the cloned pDHL1 fragment encodes a protein of 1000 amino acid residues, having a strong similarity to the DNA polymerase coded for by ORF1 of the killer plasmid pGKL1 from Kluyveromyces lactis. The catalytic and proof-reading exonuclease domains as well as terminal protein motif were well conserved as in DNA polymerases of pGKL1 and other yeast linear plasmids. Analysis of the cloned fragment further showed that pDHL1 encodes a protein partly similar to the α subunit of the K. lactis killer toxin, although killer activity was not known in the DHL system. Analysis of the 5′ non-coding region of the two above pDHL1-ORFs reveal the presence of the upstream conserved sequence similar to that found upstream of pGKL1-ORFs. The possible hairpin loop structure was also found just in front of the ATG start codon of the pDHL1-ORFs like pGKL1-ORFs. Thus the cytoplasmic pDHL plasmids were suggested to possess a gene expression system comparable to that of K. lactis plasmids. © John Wiley & Sons, Ltd.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...