Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 65 (1994), S. 2252-2254 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The extremely high resolution of a scanning tunneling microscope (STM) or atomic force microscope allows the examination of local material faults like dislocations, grain boundaries, and cracks on an atomic scale. However, the visual field of a scanning probe microscope is small and, especially in UHV, it is difficult to position a probe tip directly above such faults since they are not very frequent on a specimen surface. Therefore, a STM for the quantitative examination of large areas in UHV was developed. A new three-dimensional micropositioner based on inertial slip-stick motion was built, where the vertical motion is achieved with a special seesaw-like construction. This device is very compact and allows positioning of the piezoscanner with steps down to 20 nm length. The microspositioner is designed with low weight drives and special materials for the bearings (ruby on sapphire) to avoid sticking in UHV. First applications of a STM built with this micropositioner are shown where atomic resolution is reached.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The bulk modulus B0= 290(5) GPa and its first pressure derivative B′0= 4.9(6) were obtained for c-Si3N4 from volume versus pressure dependence. Measurements were performed under quasi-hydrostatic conditions in a diamond anvil cell to 53 GPa using synchrotron radiation and energy dispersive X-ray powder diffraction. This combined with nanoindentation measurements determined the shear modulus G0 of c-Si3N4 to be 148(16) GPa. The Vickers microhardness HV(0.5) for dense, oxygen-free c-Si3N4 was estimated to be between 30 and 43 GPa. Both the elastic moduli and microhardness of c-Si3N4 exceed those of the hexagonal counterparts, α- and β-phases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...