Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Immunological reviews 169 (1999), S. 0 
    ISSN: 1600-065X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Summary: Establishment of self-tolerance prevents autoaggression against organ-specific self-antigens. This beneficial effect, however, may In turn be responsible for tumor immune evasion. Thus, dissecting the mechanisms leading to the breakdown of self-tolerance in autoimmune diseases might provide insights for successful antitumor immune therapies. In a variety of animal models, organ- or tumor-specific immunity has been described, focusing on antigen-specific T-cell activation. Here, we discuss two trans -genic mouse models which demonstrate that both autoaggression and tumor rejection require more than activated, self-reactive T cells. TCR transgenic mice, which are tolerant to a liver-specific MHC class I antigen, Kb, can be activated to reject Kbb-positive grafts, but fail to attack Kb-expressing liver. However, autoaggression occurs when activated T cells are combined with “conditioning” of the target organ by irradiation or infection with a liver-specific pathogen. Similarly, in a mouse model of islet cell carcinoma, neither co-stimulatory tumor cells nor highly activated antitumor lymphocytes provoke an effective immune response against the tumor. Instead, a combination of activated lymphocytes and irradiation is required for lymphocyte infiltration into solid tumors. Both model systems provide evidence that although activated antigen-specific lymphocytes are a prerequisite for autoaggression, effector cell extravasation and appropriate interaction with the target organ/tumor are equally important. Thus, we propose that the organ/tumor microenvironment is a critical parameter in determining the effectiveness of an anti-self immune response.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Periodontology 2000 7 (1994), S. 0 
    ISSN: 1600-0757
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The restricted expression of the tyrosinase gene in cells producing pigment suggests the presence of cis-regulatory elements and trans-acting tissue-specific factors. Since 270 bp upstream of the transcriptional start site contain sufficient information for tissue-specific and developmentally regulated expression, we confined our analyses to this region. In this article, we discuss the recent results we have obtained on the regulation of the mouse tyrosinase gene expression demonstrating the existence of one negative and two positive-acting elements in vitro. We have evidence that the positive elements do not determine pigment production in vivo but rather modulate transcription of the mouse tyrosinase gene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1600-0757
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Tyrosinase is the key enzyme in melanin synthesis, and is expressed in the pigment epithelium of the retina, a cell layer derived from the optic cup; and in neural crest-derived melanocytes of skin, hair follicle, choroid, and iris. The tyrosinase gene has been cloned and shown to map to the well-characterized c-locus (albino locus) of the mouse. Subsequent studies demonstrated that a functional tyrosinase minigene was able to rescue the albino phenotype in transgenic mice. The transgene was expressed in a cell type-specific manner in skin and eye. During development of the mouse, the tyrosinase gene is expressed in the pigment epithelium of the retina as early as day 10.5 of gestation. In the hair follicle, tyrosinase gene expression is detected from day 16.5 onwards. This cell-type–specific expression is largely reproduced in transgenic mice. Our results suggest that sequences in the immediate vicinity of the mouse tyrosinase gene are sufficient to provide cell type-specificity and developmental regulation in melanocytes and the pigment epithelium.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...