Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 760 (1995), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0730-2312
    Keywords: bone formation ; hypertrophic chondrocytes ; osteocalcin ; osteopontin ; Type X collagen ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Endochondral bone formation occurs by a series of developmentally regulated cellular events from initial formation of cartilage tissue to stages of calcified cartilage, resorption, and replacement by bone tissue. Several studies have raised the question of the possibility that the hypertrophic chondrocytes associated with the calcifying cartilage matrix can acquire properties similar to osteoblasts. We have addressed this possibility by measuring synthesis within hypertrophic chondrocytes in vitro of two bone-related proteins, osteopontin and osteocalcin. Chondrocytes derived from chick embryo ventral vertebral tissue were cultured under conditions that promoted extracellular matrix mineralization and differentiation towards the hypertrophic phenotype as indicated by the induction of Type X collagen, alkaline phosphatase, and diminished expression of Type II collagen and the core protein of large proteoglycan. In these cultures, osteopontin synthesis was detected in early cultures in the absence of a calcified matrix; in contrast, an absence of the bone-specific protein osteocalcin was observed. However, with onset of development of the hypertrophic phenotype an induction of protein expression for osteocalcin was observed with a significant (twofold) increase in osteopontin. Maximal levels of osteocalcin synthesis occurred with the peak of alkaline phosphatase activity and Type X collagen mRNA levels. The levels of osteocalcin synthesis were induced fiftyfold from the earliest level of detection but this level was only one one-hundredth of that observed for mature chick osteoblast cultures. Osteocalcin and osteopontin were characterized by several criteria (electrophoresis, immunoblotting, chromatographic characteristics, and response to 1,25(OH)2D3) which confirmed their molecular properties as being identical to osteoblast synthesized proteins. The coordinate change in the cellular phenotype to the hypertrophic chondrocyte was shown to be concurrent with ultrastructural maturation of the cells and the accumulation of osteocalcin and osteopontin in the extracellular matrix associated with hydroxyapatite at sites of mineralization. Since the ultrastructural features of the cells in vitro and the extracellular matrix surrounding the lacunae have features of the hypertrophic chondrocyte and associated matrix in vivo, the induction of the bone-specific protein osteocalcin suggests that at least a population of these cells may develop osteoblastic phenotypic markers in association with mineralizing matrix. The detection of osteocalcin and the high level of synthesis of osteopontin may represent an advanced stage of chondrocyte hypertrophy or the possibility of a trans-differentiation of the chondrocytes to an osteoblastic-like cell.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 77-93 
    ISSN: 0730-2312
    Keywords: skeletal ; gene ; promoter ; regulation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Bone sialoprotein (BSP) is an extracellular matrix protein that has a highly restricted expression to mineralized skeletal tissues. The chicken bone sialoprotein-encoding gene (bsp) was isolated and shown to contain two less exons than similar mammalian genes, with the absence of an untranslated 5′ exon and the fusion of the first two exons that encode the signal peptide and amino terminal end of the mature BSP peptide. Primer extension analysis showed one strong transcriptional start point (tsp) in mRNA prepared from embryonic bone. Comparison of the avian bsp promoter sequence to those of other genes expressed in vertebrate skeletal tissues, identified the presence of homeobox protein binding sequence motifs for engrailed (en-1) and Msx 2 (Hox 8.1), and two collagen type II gene silencer elements. Two TATA sequences one at -21 bp and the second at -172 bp to the tsp were identified. For the first TATA element no CCAAT sequence was observed at an appropriate cis position however two Sp1 sequences (GGGCGG) were identified at -66 and -85 bp. A CCAAT element was seen in an appropriate cis position in relationship to the second upstream TATA, but transient expression analysis in embryonic chicken calvaria osteoblasts using two separate promoter/reporter constructs (+24 to -1244 bp or -121 to -1244 bp), confirmed that only the proximal TATA and Sp1 elements were functional. The +24 to -1244 bp promoter sequence demonstrated 33.6, 13.2, and 3.2 fold activity above base line respectively, within cells prepared from embryonic chicken calvaria bone, cephalic sterna, a cartilage that undergoes mineralization and caudal sterna, a cartilage that does not mineralize during embryogenesis. Only base line activity was observed within cells prepared from embryonic dermal fibroblasts a non-skeletal tissue, which does not express BSP. These same cells demonstrated comparable steady state mRNA levels, corroborating that this segment of promoter DNA had tissue specific activity. A series of nested deletions from the 5′ end of the -1244 construct demonstrated that a portion of the tissue specific regulation was controlled by the presence of a silencer element(s) between -1244 and -620 bp since deletion of this segment of DNA resulted in a 6 fold increase in the promoter activity in dermal skin fibroblasts. The -1244-+24 nt promoter construct was shown to be stimulated by dexamethasome ∼ 1.5 fold over control, inhibited by 1,25(OH)2D3 ∼60% of control and was strongly stimulated ∼5.0 fold by parathyroid hormone (PTH) in embryonic calvaria osteoblasts. These data define the proximal promoter of the avian bsp gene and identify several potential regulatory elements that have been observed in the promoters of other genes expressed in skeletal tissues. These elements imparted both tissue and hormone specific promoter activity to bsp expression within skeletal cells. J. Cell. Biochem. 64:77-93. © 1997 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...