Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 31 (1983), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 35 (1987), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: A numerical method for calculating the topographic reduction of gravity measurements is developed which follows the approximation of the topography by a single valued function. The method involves the conversion of the volume integral for the gravity effect into a two-dimensional definite integral. The definite integral is partly solved by explicit, and partly by numerical, integration, using the Gauss-Legendre quadrature formula. This method is well suited to calculating the topographic reduction of 50 to approximately 1000 m from the station–especially for microgravimetric surveys in areas of steeply sloping terrain. To test the method in practice it was applied in an area of rough relief in Keban (East Turkey).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 37 (1989), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: Power spectrum analysis of the Bouger gravity values in the Eastern Alps suggests that the gravity field may be separated into long and short wavelength components. The long wavelength component is assumed to be caused by Alpine crustal thickening. This long wavelength component was subjected to a gravimetric single density-interface inversion procedure, giving a gravimetric Mohorovičić model which is generally in good agreement with Moho-depths derived by refraction and reflection seismology.The residual high-frequency gravity component correlates well with the main surface geological units in the Eastern Alps.Apparent density mapping by applying an inverse density deconvolution filter to the short wavelength gravity component gives density values for the upper crust which correspond well with averaged density values from rock samples.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 35 (1987), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: In mapping the topography of the basement of deep sedimentary basins by gravity modelling, the accuracy can be improved by incorporating an exponential increase in density with depth. For calculating the gravity effect of a three-dimensional (3D) structure with such an exponential density-depth relation a frequency-domain forward algorithm based on series expansion is presented, the numerical evaluation of which can be performed efficiently by fast Fourier transform. The algorithm can be applied in a recursive procedure to give the inverse solution in terms of basement relief.The inversion procedure is satisfactorily tested on a 2D synthetic example and a 3D field example of gravity data from the western margin of the Pannonian Basin in eastern Austria, where up to 2.2 km of Tertiary sediments overlie an igneous or metamorphic basement. The results are confirmed by basement intersections in several wells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Meteorology and atmospheric physics 33 (1984), S. 229-238 
    ISSN: 1436-5065
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography , Physics
    Description / Table of Contents: Zusammenfassung Es wird ein Verfahren beschrieben, das die numerische Berechnung der Schwere von Modellkörpern ermöglicht, falls deren Oberfläche durch eindeutige Funktionen darstellbar ist. Die Integrale für die Schwerekomponenten werden durch partielle Integration in eine numerisch integrierbare Form gebracht. Die numerische Integration erfolgt nach der Gaußschen Quadraturmethode.
    Notes: Summary The approach described in this paper allows the numerical calculation of the gravity of two- and three-dimensional bodies, provided their boundaries can be expressed by two single valued functions. Boundary integral theorems are used to convert the integrals for the gravity components into a form which can be integrated numerically. To perform numerical integration routines based on the Gauβ quadrature method are applied.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...