Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-8272
    Keywords: immunoaffinity ; affinity precipitation ; polycomplexes ; antibody purification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The nonstoichiometric polyelectrolyte complex (PEC) formed by poly(methacrylic acid) (degree of polymerization 1830) (PMAA)and poly(N-ethyl-4-vinyl-pyridinium bromide) (degree of polymerization 530) (PEVP) undergoes reversible precipitation from aqueous solution at any desired pH-value in the range 4.5–6.5 depending on the ionic strength and PEVP/PMAA ratio in the complex. The antigen, inactivated glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from rabbit was covalently coupled to PEVP. The resulting GAPDH–PEVP/PMAA complex was used for the purification of antibodies from a 6G7 clone specific towards inactivated GAPDH. The crude extract was incubated with GAPDH-containing PEC and the precipitation of the PEC was carried out at 0.01 M NaCl and pH 4.5, 5.3, 6.0 and 6.5 using PEC with PEVP/PMAA ratios of 0.45, 0.3, 0.2 and 0.15, respectively. Purified antibodies were eluted at pH 4.0 where PECs of all compositions used were insoluble.PEC precipitation is accompanied only by small nonspecific coprecipitation of proteins. Precipitated PEC could be dissolved at pH 7.3 and used repeatedly.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1536
    Keywords: Poly(N-vinyl caprolactam) ; lower critical solution temperature ; thermodynamics of polymer hydration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The lower critical solution temperature of aqueous solutions of poly(N-vinyl caprolactam) falls in the 305–307 K range and depends on the molecular weight of the polymer. The thermodynamic functions of mixing at 298 K have been calculated from measurements of vapor pressures and heats of dissolution and dilution. Partial Gibbs energy, partial enthalpy, and partial entropy of mixing were negative over the entire range of composition. Increasing temperature resulted in a decrease in the exothermal character of mixing. Excessive heat capacity values, calculated from the dependencies of enthalpy of mixing on temperature, were positive over the entire composition range. Heat capacity of dilute solutions was measured at 298 K and partial heat capacity of poly(N-vinyl caprolactam) at infinite dilution was shown to be positive. The data obtained point out the hydrophilic and hydrophobic hydration of poly(N-vinyl caprolactam) in aqueous solutions. Hydrophobic hydration dominates at temperatures close to binodal curve. As a result, the mutual mixing of the polymer with water is decreased and phase separation takes place.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 272 (1994), S. 1234-1239 
    ISSN: 1435-1536
    Keywords: Poly(N-vinyl caprolactam) ; poly(N-vinyl propylacetamide) ; lower critical solution temperature ; thermodynamics of polymer hydration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Phase diagrams of aqueous solutions of poly(N-vinyl caprolactam) (PVCL), N-vinyl caprolactam copolymer with vinylamine (3.8 mol%) (CP(VCL-VA)), and poly(N-vinyl propylacetamide) (PVPA) were shown to be binodal curves with lower critical solution temperatures (LCST) in the range 304–313.5 K and critical concentrations in the range of 0.02–0.08 polymer weight fraction. Aqueous solutions of N-vinyl caprolactam copolymer with N-vinyl pyrrolidone (80 mol%) (CP(VCL-VP)) remained homogeneous in the entire region of the liquid state of water. The enthalpy of mixing with water of PVPA and CP(VCL-VP) was negative and the curve was concave over the entire range of composition at 298 and 308 K. The excessive heat capacity and partial heat capacity at infinite dilution of PVPA were positive, proving the hydrophobic character of hydration of this polymer. In contrast, these parameters were negative for CP(VCL-VP), revealing hydrophilic hydration. Hydrophilic hydration was predominant in solutions which were homogeneous over a wide temperature range, whereas hydrophobic hydration predominated in solution of polymers with LCST.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0006-3592
    Keywords: immobilized metal affinity precipitation ; α-amylase inhibitor ; wheat ; poly(N-isopropylacrylamide) ; vinylimidazole ; iminodiacetic acid ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A method for purifying α-amylase inhibitor from wheat meal based on immobilized metal affinity with a thermosensitive copolymer is developed. The studies represent the thermoprecipitation properties of the copolymers of N-isopropylacrylamide (NIPAM) with iminodiacetic acid (IDA) and 1-vinylimidazole (VI), respectively. The polymer which is obtained by the copolymerization of 1-vinylimidazole and N-isopropylacrylamide, charged with Cu(II), exhibited specific interaction of the metal ions to the protein inhibitor. The precipitation was induced by salt and the recovery of the amylase inhibitor was achieved by dissolving the inhibitor-polymer complex in imidazole buffer and subsequent precipitation of the polymer. A single family of the α-amylase inhibitor was recovered from the polymer with 89% yield and about fourfold purification. The SDS-PAGE pattern showed significant purification of the inhibitor. The binding of the inhibitor to the Cu(II)-polymer conjugate depends upon the Cu(II) concentration in the copolymer and also upon the concentration of the protein. The recovered polymer could be reused with reasonable efficiency. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:695-704, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 1101-1106 
    ISSN: 0006-3592
    Keywords: affinity thermoprecipitation ; poly(N-vinyl caprolactam) ; poly(N-isopropylacrylamide) ; polymer conjugates with affinity ligands ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Conjugates to two thermoprecipitating polymers, poly(N-vinyl caprolactam) and poly(N-isopropylacrylmide), with soybean trypsin inhibitor, Cibacron Blue 3GA, Cu-iminodiacetic acid, and p-aminobenzamidine were synthesized. The interaction of these conjugates with trypsin and lactate dehydrogenase was studied. Coupling of the ligand to a polymer resulted in a 100-1000-fold decrease in enzyme-affinity. Rough theoretical estimates revealed that a successful affinity precipitation required that the binding of a target protein and a ligand coupled to a polymer have binding constants on the order of 10-7-10-8 M. Such strong affinity of low molecular weight ligands that can provide binding constants of 10-9-10-11 M or alternatively multipoint attachment of the target protein molecule. The ligand in the ligand-polymer conjugate is still accessible to the protein after thermoprecipitation, and the latter can bind with the particle of the dispersion of thermoprecipitated ligand-polymer precipitate may result in stripping of enzyme molecules from the surface of the particles. © 1993 Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1608-3113
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0952-3499
    Keywords: artificial chaperone ; polyelectrolyte complexes ; glyceraldehyde-3-phosphate dehydrogenase ; enzyme inactivation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The simplified model of chaperone action when the inactive misfolded forms are removed from the reaction media preventing aggregation was developed using antibodies in combination with polyelectrolyte complexes. The antibodies, which bind specifically inactive dimers of glyceraldehyde-3-phosphate dehydrogenase but not native tetramers, were coupled covalently to poly(methacrylic acid). The treatment of inactivated GAPDH with this conjugate followed by its precipitation after equimolar addition of polycation, poly-(N-ethyl-4-vinylpyridinium bromide), resulted in a significant increase in the specific activity of the enzyme. Copyright © 1998 John Wiley & Sons, Ltd
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chicester [u.a.] : Wiley-Blackwell
    Journal of Molecular Recognition 11 (1998), S. 211-216 
    ISSN: 0952-3499
    Keywords: metal chelate affinity precipitation ; N-isopropylacrylamide ; 1-vinylimidazole ; iminodiacetic acid ; thermoprecipitation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Affinity precipitation is fast emerging as a successful technique for the purification of proteins which can be introduced at an early stage of downstream processing. The technique applies the use of reversibly soluble-insoluble polymers which have either natural or synthetic origin. Apart from the successful use of some natural polymers, such as chitosan and alginate, the vast application of the technique depends upon the design of efficient synthetic polymers. In this laboratory, N-isopropylacrylamide (NIPAM) copolymers have been developed for metal chelate affinity precipitation of proteins. The copolymers of 1-vinylimidazole (VI) and iminodiacetic acid (IDA) with NIPAM were synthesized. The copolymers were thoroughly characterized with a view to designing an efficient soluble-insoluble polymer for metal chelate affinity precipitation of proteins. Copyright © 1998 John Wiley & Sons, Ltd.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...