Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Erscheinungszeitraum
  • 1
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 53 (1989), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: We have correlated myelin membrane structure with biochemical composition in the CNS and PNS of a phylogenetic series of animals, including elasmobranchs, teleosts, amphibians, and mammals. X-ray diffraction patterns were recorded from freshly dissected, unfixed tissue and used to determine the thicknesses of the lipid bilayer and the widths of the spaces between membranes at their cytoplasmic and extracellular appositions. The lipid and protein compositions of myelinated tissue from selected animals were determined by TLC and sodium dodecyl sulfate-polyacrylamide gel elec-trophoresis/immunoblotting, respectively. We found that(l) there were considerable differences in lipid (particularly gly-colipid) composition, but no apparent phylogenetic trends; (2) the lipid composition did not seem to affect either the bilayer thickness, which was relatively constant, or the membrane separation; (3) the CNS of elasmobranch and teleost and the PNS of all four classes contained polypeptides that were recognized by antibodies against myelin Po glycoprotein; (4) antibodies against proteolipid protein (PLP) were recognized only by amphibian and mammalian CNS; (5) wide extracellular spaces (ranging from 36 to 48 Å) always correlated with the presence of Po-immunoreactive protein; (6) the narrowest extracellular spaces (∼31 Å) were observed only in PLP-containing myelin; (7) the cytoplasmic space in PLP-containing myelin (∼31 Å) averaged ∼5Å less than that in Po-containing myelin; (8) even narrower cytoplasmic spaces (∼24Å) were measured when both Po and 11–13-kilodalton basic protein were detected; (9) proteins immu-noreactive to antibodies against myelin P2 basic protein were present in elasmobranch and teleost CNS and/or PNS, and in mammalian PNS, but not in amphibian tissues; and (10) among mammalian PNS myelins, the major difference in structure was a variation in membrane separation at the cytoplasmic apposition. These findings demonstrate which features of myelin structure have remained constant and which have become specifically altered as myelin composition changed during evolutionary development.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 45 (1985), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: We have correlated membrane structure and interactions in shiverer sciatic nerve myelin with its biochemical composition. Analysis of x-ray diffraction data from shiverer myelin swollen in water substantiates our previous localization of an electron density deficit in the cytoplasmic half of the membrane. The density loss correlates with the absence of the major myelin basic proteins and indicates that in normal myelin, the basic protein is localized to the cytoplasmic apposition. As in normal peripheral myelin, hypotonic swelling in the shiverer membrane arrays occurs in the extracellular space between membranes; the cytoplasmic surfaces remain closely apposed notwithstanding the absence of basic protein from this region. Surprisingly, we found that the interaction at the extracellular apposition of shiverer membranes is altered. The extracellular space swells to a greater extent than normal when nerves are incubated in distilled water, treated at a reduced ionic strength of 0.06 in the range of pH 4–9, or treated at constant pH (4 or 7) in the range of ionic strengths 0.02–0.20. To examine the biochemical basis of this difference in swelling, we compared the lipid composition of shiverer and normal myelin. We find that sulfatides, hydroxycerebroside, and phosphatidylcholine are 20–30% higher than normal; non-hydroxycerebroside and sphingomyelin are 15–20% lower than normal; and ethanolamine phosphatides, phosphatidylserine, and cholesterol show little or no change. A higher concentration of negatively charged sulfatides at the extracellular surface likely contributes to an increased electrostatic repulsion and greater swelling in shiverer. The cytoplasmic surfaces of the apposed membranes of normal and shiverer myelins did not swell apart appreciably in the pH and ionic strength ranges expected to produce electrostatic repulsion. This stability, then, clearly does not depend on basic protein. We propose that P0 glycoprotein molecules form the stable link between apposed cytoplasmic membrane surfaces in peripheral myelin.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 242 (1974), S. 0 
    ISSN: 1749-6632
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Allgemeine Naturwissenschaft
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Springer
    Journal of neurocytology 12 (1983), S. 921-938 
    ISSN: 1573-7381
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary GM1 ganglioside has been localized on the surfaces of myelinated, peripheral nerve fibres by using immunofluorescence to detect cholera toxin receptors. Unfixed, mouse sciatic nerves were teased into individual, intact fibres in order to expose their extracellular surfaces. Cholera toxin binding sites were abundant at all nodes of Ranvier; they were scarce on the internodal fibre surfaces. The nodal receptors were resistant to various degradative enzymes, including trypsin and proteinase K. Proteases did not unmask receptors on the internodal surfaces. Exogenous GM1 successfully competed for the toxin binding sites on the fibres. From this evidence and the specificity of cholera toxin binding, we conclude that GM1 ganglioside is abundantly present on the membrane surfaces of peripheral nodes of Ranvier and is not present on the internodal Schwann cell surfaces in an appreciable amount. The patterns of fluorescence within the node suggest that the axon and Schwann cell structures are sites where GM1 is localized. Treatment of the teased fibres withVibrio cholerae neuraminidase, which is known to reduce polysialogangliosides to the monosialoganglioside Gm1, induced cholera toxin binding on the internodal Schwann cell surfaces. The induced receptors, as well as their precursors, were resistant to trypsin and proteinase K. We conclude that the internodal Schwann cell surface is rich in an unidentified polysialoganglioside(s) that can be converted to GM1 by neuraminidase.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...