Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 57 (1965), S. 49-60 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 57 (1965), S. 27-32 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The permeation of carbon dioxide through polyethylene membranes has been studied at pressures up to 54.4 atm. and at temperatures above and below the critical temperature of the gas (31.0°C.). The permeability coefficient is independent of pressure at the highest experimental temperature (61.0°C.), but becomes increasingly pressure-dependent as the temperature is lowered. The principle of corresponding states can be used to correlate the solubility of both gases and vapors in polyethylene over a wide range of temperatures. This principle can also be invoked to obtain an upper limit for the penetrant pressure above which the permeability coefficient becomes pressure-dependent. The effect of pressure on the permeability, solubility, and diffusivity of gases and vapors in polyethylene is discussed in some detail.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: An improved cell which permits the measurement of permeabilities of membranes to gases over a wide range of temperatures and gas pressures is described. The measurements are made by the variable volume method, under constant pressure differential across the membrane. The cell lends itself particularly well to routine tests, because it does not require calibration or the use of vacuum techniques. The performance of the cell is discussed, and typical experimental results are presented. A modified permeability cell of the same type for high-pressure studies is also described. Measurements with this apparatus show that the rate of gas permeation obeys, in some cases, a single from of Fick's law, even under pressure differentials across the membrane as high as 800 psi (54 atm.). The paper also compares permeability data obtained by the variable volume and the variable pressure methods. The permeability of 0.002 in.-thick Alathon 15 polyethylene to oxygen and nitrogen was determined between 0 and 50°C. by the two methods, using the same sample of membrane in situ, and the measurements were found to agree within experimental error. Permeabilites of 0.010 in.-thick samples of Alathon 15 polyethylene to nitrogen, oxygen, helium, and carbon dioxide obtained in the same temperature range by the variable volume method were 15-30% higher than the corresponding data determined by the variable pressure method. This discrepancy could be due to the fact that the variable pressure measurements with the thicker membrances may not have been made under true steady-state conditions, although permeabilities were determined from apparently linear sections of permeated gas pressure vs. time curves. A critical re-examination of the methods used to determine permeability constants is suggested.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...