Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0851
    Keywords: Chimeric anti-carcinoma mAb ; Aglycosylated mAb ; Biologic properties
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary It has been demonstrated previously that the degree of glycosylation of a molecule may alter its pharmacokinetic properties and, in the case of an antibody, its metabolism and other biological properties. Transfectomas producing aglycosylated chimeric B72.3(γ1) pancarcinoma monoclonal antibody (mAb) were developed by introduction of the eukaryotic expression construct pECMgpB72.3 HuG1-agly, into SP2/0 murine myeloma cells producing the chimeric κ chain of mAb B72.3. After cell cloning, one subclone with the highest binding to the TAG-72-positive human colon carcinoma was designated mAb aGcB72.3, and its biological and biochemical properties were compared with those of the chimeric B72.3(γ1), designated mAb cB72.3. Polyacrylamide gel electrophoresis showed that under non-reducing conditions, the molecular masses of the aGcB72.3 and cB72.3 mAbs were 162 kDa and 166 kDa respectively. The heavy chain of mAb aGcB72.3 had a slightly faster mobility than that of cB72.3, while the mobility of the light chains of the two chimeric mAbs was similar. No difference was observed in the isoelectric points of either chimeric mAb. Liquid competition radioimmunoassays demonstrated that the aGcB72.3 and cB72.3 mAbs have comparable binding properties to TAG-72. These studies demonstrate that aglycosylation of the chimeric IgG1 mAb B72.3 at theCh2 domain, as has been shown for other mAbs [Dorai H., Mueller B., Reisfeld R. A., Gillies S. D. (1991) Hybridoma 10:211; Morrison S. L., Oi V. T. (1989) Adv Immunol 44:65], eliminates antibody-dependent cell-mediated cytotoxicity activity, but does not substantially alter affinity or plasma clearance in mice. These studies also demonstrate for the first time (a) no difference in plasma clearance of an aglycosylated and a chimeric mAb in a primate after i.v. inoculation; (b) a difference (P ⩽0.05) in mice in the more rapid peritoneal clearance of a chimeric mAb versus an aglycosylated chimeric mAb; (c) higher (0.05 ⩽P ⩽0.1) tumor:liver ratios at 24, 72 and 168 h using111In-labeled aglycosylated chimeric mAb versus chimeric mAb. Since the liver is the major site of metastatic spread for most carcinomas, slight differences in tumor to normal liver ratios may be important in diagnostic applications. These studies thus indicate that comparative analyses of a novel recombinant construct (i.e., aglycosylated) and its standard chimeric counterpart require documentation in more than one system and are necessary if one is ultimately to define optimal recombinant/chimeric constructs for diagnosis and therapy in humans.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1619-7089
    Keywords: Indium ; Yttrium ; Biodistribution ; Monoclonal antibodies ; Ligands
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The biodistribution of indium-111/yttrium-88-labeled B3 monoclonal antibody, a murine IgG1k, was evaluated in non-tumor-bearing mice. B3 was conjugated to either 2-(p-SCN-Bz)-6-methyl-DTPA (1B4M) or 2-(p-SCN-Bz)-1,4,7,10 tetraazacyclododecane tetra-acetic acid (2B-DOTA) and labeled with 111In at 1.4–2.4 mCi/mg and 88Y at 0.1–0.3 mCi/mg. Non-tumor-bearing nude mice were co-injected i.v. with 5–10 μCi/4–10 μg of 111In/88Y-labeled B3 conjugates and sacrificed at 6 h and daily up to 168 h post-injection. Mice injected with 111In/88Y (IB4M)-B3 showed a similar biodistribution of the two radiolabels in all tissues except the bones, where significantly higher accretion of 88Y than 111In was observed, with 2.8% ± 0.2% vs 1.3% ± 0.16% ID/g in the femur at 168 h, respectively (P〈0.0001). In contrast, mice receiving the 111In/88Y-(DOTA)-B3 conjugate showed significantly higher accumulation of 111In than 88Y in most tissues, including the bones, with 2.0% ± 0.1% vs 1.2% ± 0.09% ID/g in the femur at 168 h, respectively (P〈0.0001). Whereas the ratios of the areas underneath the curve (%ID × h/g) in the blood, liver, kidney and bone were 0.96, 1.12, 1.13, and 0.74 for 111In/88Y-(IB4M)-B3 and 0.84, 1.23, 1.56, and 1.31 for 111In/88Y (DOTA)-B3, respectively, ratios ≈ 1 were observed between 111In-(IB4M)-B3 and 88Y-(DOTA)-B3. In summary, while neither IB4M nor DOTA was equally stable for 111In and 88Y, the fate of 88Y- (DOTA)-B3 could be closely traced by that of 111 In-(IB4M)-B3.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...