Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A 13C/12C mass spectrometer was interfaced with a open gas exchange system including four growth chambers to investigate CO2 exchange components of perennial ryegrass (Lolium perenne L.) stands. Chambers were fed with air containing CO2 with known δ13C (δCΟ2−2.6 or −46.8‰). The system did not fractionate C isotopes and no extraneous CO2 leaked into chambers. The on-line 13C discrimination (Δ) of ryegrass stands in light was independent of δCΟ2 when δCΟ2 was constant. The δ of CO2 exchanged by the stands in light (δNd) and darkness (δRn) differed by 0.7‰, suggesting some Δ in dark respiration at the stand-level. However, Δ decreased by ∼ 10‰ when δCΟ2 was switched from −46.8 to −2.5‰, and increased by ∼ 10‰ following a shift from −2.6 to −46.7‰ due to isotopic disequilibria between photosynthetic and respiratory fluxes. Isotopic imbalances were used to assess (non-photorespiratory) respiration in light and the replacement of the respiratory substrate pool(s) by new photosynthate. Respiration was partially inhibited by light, but increased during the light period and decreased in darkness, in association with temperature changes. The labelling kinetics of respiratory CO2 indicated the existence of two major respiratory substrate pools: a fast pool which was exchanged within hours, and a slow pool accounting for ∼ 60% of total respiration and having a mean residence time of 3.6 d.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 
cv, cultivar
δ, deviation of C isotope composition from a standard
Δ, C isotope discrimination
WSC, water soluble carbohydrates

Steady-state labelling of all post-anthesis photosynthate of wheat was performed to assess the mobilization of pre-anthesis C (C fixed prior to anthesis) in vegetative plant parts during grain filling. Results were compared with estimates obtained by indirect approaches to mobilization of pre-anthesis C: ‘classical’ growth analysis and balance sheets of water soluble carbohydrates (WSC) and protein. Experiments were performed with two spring wheat cultivars grown with differential nitrogen fertilizer supply in 1991 and 1992. The fraction of pre-anthesis C mobilized in above-ground vegetative biomass ranged between 24 and 34% of total C present at anthesis. Treatment effects on mobilization of pre-anthesis C in total above-ground vegetative biomass were closely related (r2 = 0·89) to effects on mobilization of WSC-C plus protein-C (estimated as N mobilized × 3·15). On average, 81% of pre-anthesis C mobilization was attributable to the balance of pre-anthesis WSC (48%) and protein (33%) between anthesis and maturity. In roots, WSC and protein mobilization accounted for only 29% of the loss of pre-anthesis C. Notably, mobilization of pre-anthesis C was 1·4–2·6 times larger than the net loss of C from above-ground vegetative biomass between anthesis and maturity. This discrepancy was mainly due to post-anthesis C accumulation in glumes and stem. Post-anthesis C accumulation was related to continued synthesis of structural biomass after anthesis and accounted for a mean 15% of total C contained in above-ground vegetative plant parts at maturity. A close correspondence between net loss of C and mobilization of pre-anthesis C was only apparent in leaf blades and leaf sheaths. Although balance sheets of WSC and protein also underrated the mobilization of pre-anthesis C by ≈ 19%, they gave a much better estimate of pre-anthesis C mobilization than growth analysis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 22 (1999), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 
 δ, C isotope composition relative to Pee Dee Belemnite
WSC, water-soluble carbohydrates
N, nitrogen
C, carbon
cv, cultivar
ME, efficiency of mobilized pre-anthesis C utilization in grain filling (g C g–1C)

Significant mobilization of protein and carbohydrates in vegetative plant parts of wheat regularly occurs during grain filling. While this suggests a contribution of reserves to grain filling, the actual efficiency of mobilized assimilate conversion into grain mass (ME) is unknown. In the present study the contribution of pre-anthesis C (C fixed prior to anthesis) to grain filling in main stem ears of two spring wheat (Triticum aestivum L.) cultivars was determined by 13C/12C steady-state labelling. Mobilization of pre-anthesis C in vegetative plant parts between anthesis and maturity, and the contributions of water-soluble carbohydrates (WSC) and protein to pre-anthesis C mobilization were also assessed. Experiments were performed with two levels of N fertilizer supply in each of 2 years. Pre-anthesis reserves contributed 11–29% to the total mass of C in grains at maturity. Pre-anthesis C accumulation in grains was dependent on both the mass of pre-anthesis C mobilized in above-ground vegetative plant parts (r2 = 0·87) and ME (defined as g pre-anthesis C deposited in grains per g pre-anthesis C mobilized in above-ground vegetative plant parts; r2 = 0·40). ME varied between 0·48 and 0·75. The effects of years, N fertilizer treatments and cultivars on ME were all related to differences in the fractional contribution of WSC to pre-anthesis C mobilization. Multiple regression analysis indicated that C from mobilized pre-anthesis WSC may be used more efficiently in grain filling than C present in proteins at anthesis and mobilized during grain filling. Possible causes for variability of ME are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...