Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 353 (1991), S. 445-448 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] To study the role of kinesin in coalignment of intermediate filaments with microtubules, we used the microinjection of the affinity-purified rabbit antibody against the motor domain of the kinesin heavy chain (antibody HD) to knock out kinesin in human fibroblasts and analysed the distribution of ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 359 (1992), S. 480-482 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] CHROMOSOME segregation, a dramatic event in the life of a cell, is coordinated ;by a piece of precision protein machinery, the spindle. This machine uses microtubule-based motor proteins, and four papers in this issue !4 tell us something of how spindle motors work and of how much we have yet ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0886-1544
    Keywords: kinesin ; brain mitochondria ; motility ; membrane-associated ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Kinesin, a mechanochemical enzyme that translocates membranous organelles, was initially identified and purified from soluble extracts from vertebrate brains. However, immunocytochemical and morphological approaches have demonstrated that kinesin could be associated to intracellular membranous organelles. We used an antibody raised against the head portion of the Drosophila kinesin heavy chain to reveal the presence of this protein in membranous organelles from rat brain. By using differential centrifugation and immunoblotting we observed a 116 kDa protein that crossreacts with this antibody in microsomes, synaptic vesicles, and mitochondria. This protein could be extracted from mitochondria with low salt concentrations or ATP. The 116 kDa solubilized protein has been identified as conventional kinesin based on limited sequence analysis. We also show that a polyclonal antibody raised against mitochondria-associated kinesin recognizes soluble bovine brain kinesin. The soluble and mitochondrial membrane-associated kinesins show a different isoform pattern. These results are consistent with the idea that kinesin exists as multiple isoforms that might be differentially distributed within the cell. In addition digitonin fractionation of mitochondria combined with KI extraction revealed that kinesin is a peripheral protein, preferentially located in a cholesterol-free outer membrane domain; this domain has the features of contact points between the mitochondrial outer and inner membranes. The significance of these observations on the functional regulation of the mitochondria-associated kinesin is discussed. © 1994 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0886-1544
    Keywords: stress fibers ; fibroblasts ; myosin ; bipolar filaments ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The authors examined the molecular organization of myosin in stress fibers (microfilament bundles) of cultured mouse embryo fibroblasts. To visualize the organization of myosin filaments in these cells, fibroblast cytoskeletons were treated with gelsolin-like protein from bovine brain (hereafter called brain gelsolin), which selectively disrupts actin filaments. As shown earlier [Verkhovsky et al., 1987], this treatment did not remove myosin from the stress fibers. The actin-free cytoskeletons then were lightly sonicated to loosen the packing of the remaining stress fiber components and fixed with glutaraldehyde.Electron microscopy of platinum replicas of these preparations revealed dumbbell-shaped structures of approximately 0.28 μm in length, which were identified as bipolar myosin filaments by using antibodies to fragments of myosin molecule (subfragment I and light meromyosin) and colloidal gold label. Bipolar filaments of myosin in actin-free cytoskeletons were often organized in chains and lattices formed by end-to-end contacts of individual filaments at their head-containing regions. Therefore, after extraction of actin, it was possible for the first time to display bipolar myosin filaments in the stress fibers of cultured cells.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...