Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The influence of chronic morphine and spontaneous withdrawal on the expression of dopamine receptors and neuropeptide genes in the rat striatum was investigated. Morphine dependence was induced by subcutaneous implantation of two morphine pellets for 6 days. Rats were made abstinent by removal of the pellets 1, 2 or 3 days before they were killed. The mRNA levels coding for D1- and D2-dopamine receptors, dynorphin, preproenkephalin A and substance P were determined by quantitative in situ hybridization. The caudate putamen and the nucleus accumbens showed equivalent modifications in dopamine receptor and neuropeptide gene expression. After 6 days of morphine, a decrease in D2-dopamine receptor and neuropeptide mRNA levels was observed (– 30%), but there was no change in D1-dopamine receptor mRNA. In abstinent rats, both D1- and D2-dopamine receptor mRNA levels were decreased 1 day after withdrawal (– 30% compared with chronic morphine). In contrast, neuropeptide mRNA levels were unaffected when compared with those observed after 6 days of morphine. During the second and third day of withdrawal, there was a gradual return to the levels seen in the placebo-treated group, for both dopamine receptor and neuropeptide mRNAs. Phenotypical characterization of striatal neurons expressing μ and κ opioid receptor mRNAs showed that, in striatonigral neurons, both mRNAs were colocalized with D1-receptor and Dyn mRNAs. Our results suggest that during morphine dependence, dopamine and morphine exert opposite effects on striatonigral neurons, and that effects occurring on striatopallidal neurons are under dopaminergic control. We also show that withdrawal is associated with a down regulation of the postsynaptic D1 and D2 receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The c-fos gene is expressed in the central nervous system in response to various neuronal stimuli. Using in situ hybridization, we examined the effects of chronic morphine treatment and withdrawal on c-fos mRNA in the rat brain, and particularly within identified striatal neurons. Morphine dependence was induced by subcutaneous implantation of two pellets of morphine for 6 days and withdrawal was precipitated by administration of naltrexone. Placebo animals and morphine-dependent rats showed a very weak c-fos mRNA expression in all the structures studied. Our study emphasized the spatial variations in c-fos mRNA expression, and also revealed a peak expression of c-fos mRNA at 1 h after naltrexone-precipitated withdrawal in the projection areas of dopaminergic neurons, noradrenergic neurons and in several regions expressing opiate receptors. Interestingly, morphine withdrawal induces c-fos mRNA expression in the two efferent populations of the striatum (i.e. striatonigral and striatopallidal neurons) both in the caudate putamen and nucleus accumbens. Moreover, the proportions of activated neurons during morphine withdrawal are different in the caudate putamen (mostly in striatopallidal neurons) and in the shell and core parts of the nucleus accumbens (mostly in striatonigral neurons). The activation of striatopallidal neurons suggests a predominant dopaminergic regulation on c-fos gene expression in the striatum during withdrawal. On the contrary, c-fos induction in striatonigral neurons during withdrawal seems to involve a more complex regulation like opioid–dopamine interactions via the µ opioid receptor and the D1 dopamine receptor coexpressed on this neuronal population or the implication of other neurotransmitter systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 9 (1997), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Hippocampal function was analysed by making recordings in rhesus monkeys actively walking in the laboratory. In a sample of 352 cells recorded in the hippocampus and parahippocampal cortex, a population of ‘spatial view’ cells was found to respond when the monkey looked at a part of the environment. The responses of these hippocampal neurons (i) occur to a view of space ‘out there’, not to the place where the monkey is, (ii) depend on where the monkey is looking, as shown by measuring eye position, (iii) do not encode head direction, and (iv) provide a spatial representation that is allocentric, i.e. in world coordinates. This representation of space ‘out there’ would be an appropriate part of a primate memory system involved in memories of where in an environment an object was seen, and more generally in the memory of particular events or episodes, for which a spatial component normally provides part of the context.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...