Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 43 (1984), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: High resolution 2DGE (two-dimensional gel electrophoresis) was used to characterize neuronal and glial proteins of the rat optic nerve, to examine the phases of intraaxonal transport with which the neuronal proteins are associated, and to identify the ribosomal populations on which these proteins are synthesized. Neuronal proteins synthesized in the retinal ganglion cells were identified by injecting the eye with l-[35S]methionine, followed by 2DGE analysis of fast and slow axonally transported proteins in particulate and soluble fractions. Proteins synthesized by the glial cells were labeled by incubating isolated optic nerves in the presence of l-[35S]methionine and then analyzed by 2DGE. A number of differences were seen between filamentous proteins of neurons and glia. Most strikingly, proteins in the α-and β-tubulin region of the 2D gels of glial proteins were distinctly different than was observed for axonal proteins. As expected, neurons but not glia expressed neurofilament proteins, which appeared among the slow axonally transported proteins in the particulate fraction; significant amounts of the glial filamentous protein, GFA, were also labeled under these conditions, which may have been due to transfer of amino acids from the axon to the glial compartment. The fast axonally transported proteins contained relatively large amounts of high-molecular-weight acidic proteins, two of which were shown to comigrate (on 2DGE) with proteins synthesized by rat CNS rough microsomes; this finding suggests that rough endoplasmic reticulum may be a major site of synthesis for fast transported proteins. In contrast, the free poly some population was shown to synthesize the principal components of slow axonal transport, including tubulin subunits, actin, and neurofilament proteins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 43 (1984), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Cyclic-AMP-binding proteins in membrane and soluble fractions from rat forebrain were compared; membrane fractions included smooth and rough microsomes and a plasma membrane fraction enriched in synaptic membranes. Protein fractions were treated with 8-azido-[32P]cyclic AMP and ultraviolet irradiation to covalently tag cyclic-AMP-binding proteins. Labeled proteins were then analyzed by two-dimensional gel electrophoresis (2DGE) and fluorography. The soluble CNS proteins contained two major cyclic-AMP-binding species at 48K (48K 5.5 and 48K 5.45), differing slightly in their isoelectric points. Another protein was seen at 54K (54K 5.3) adjacent to the β-tubulin subunits in the 2D electrophoretogram. The analysis of the smooth microsome and plasma membrane fractions differed from the soluble fraction in that there were two cyclic-AMP-binding proteins adjacent to the β-tubulin region (54K 5.3 and 52K 5.3) differing slightly in apparent molecular weight. The membrane fractions also contained a cyclic-AMP-binding protein at 54K 5.8. The 52K 5.3 and 54K 5.8 species were unique to the membrane fractions. The rough microsomes did not contain detectable amounts of cyclic-AMP-binding proteins. Free polysomes were isolated from brain tissue, and translation products were analyzed by cyclic AMP affinity chromatography and immunopurification with antibodies to the brain specific type II regulatory subunit. The translation products that were found to bind cyclic AMP Sepharose are as follows: 48K 5.5, 48K 5.45, 52K 5.3, and 54K 5.8. These species comigrated with proteins that were photoaffmity-labeled in cytosol and membrane fractions. A translation product at 54K 5.3 was not detected, and, therefore, the possibility exists that this protein may result from posttranslational modification of another protein. The translation product at 52K 5.3 was precipitated with antibodies against the brain specific type II regulatory subunit of cyclic-AMP-dependent protein kinase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 36 (1981), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Free and membrane-bound polysomes were prepared from rat forebrain and added to a cell-free system containing rabbit reticulocyte factors and L-[35S]methionine. The translation products were analyzed by two-dimensional gel electrophoresis followed by autoradiography. The free polysomes synthesized actin and at least four major tubulin subunits (α1, α2, β1, and α2) that are found in rat forebrain cytoplasm. The membrane-bound polysomes synthesized predominantly one protein (MB) in the tubulin region of the two-dimensional gel. MB has a molecular weight and isoelectric point similar to α-tubulin. Only trace amounts of α- and β-tubulin and actin were synthesized by the membrane-bound polysomes. MB co-purified with cytoplasmic tubulin after two cycles of aggregation and disaggregation. MB synthesized in vitro (from membrane-bound polysomes) and α- and β-tubulin and actin subunits (synthesized from free polysomes) were digested with Staphylococcus aureus V8 protease, and the resulting peptides were separated by slab gel electrophoresis followed by autoradiography. The peptide pattern of MB was similar but not identical to the peptide patterns of α- and β-tubulin; MB yielded peptides not found in tubulin. We conclude that membrane-bound polysomes from rat forebrain do not synthesize significant amounts of the predominant tubulin subunits synthesized by free polysomes. A major protein (MB) is synthesized by membrane-bound polysomes and is similar, but not identical, to α-tubulin synthesized by free polysomes on the basis of molecular weight, isoelectric point, and peptide analysis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 40 (1983), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Carbonic anhydrase from both the cytoplasmic and membrane fractions of the forebrains of rats was characterized with respect to enzymatic activity, immunoreactivity, and in vitro biosynthesis. A procedure for the rapid purification of both membrane-bound and soluble brain carbonic anhydrase is presented that permits retention of full enzymatic activity. Both forms of the enzyme were found to show specific activities of approximately 5500 Units/mg protein when CO2 hydrating activity was determined. In addition, they exhibited similar esterase activity when assayed with p-nitrophenyl acetate. The membrane-bound form, although requiring detergent for extraction from membranes, was freely soluble in aqueous buffers after purification. The molecular weights of both soluble and membrane-bound carbonic anhydrase are 30,000 daltons, and mixing experiments failed to show any significant differences with respect to size. The two forms also exhibit isoelectric points of 7.2. However, the two proteins were found to differ in two respects. Complement fixation indicated that antibodies to soluble carbonic anhydrase had a higher affinity for the soluble form than for the membrane-bound form. The failure to observe any precursor-product relationship between these two proteins with pulse chase studies and the establishment that carbonic anhydrase-like proteins are synthesized on both free polysomes and the rough endoplasmic reticulum indicated that these proteins are synthesized by two separate mechanisms. In vitro synthesis on both free and bound polysomes was determined by two independent methods using different antibodies and different analytical procedures. The basis for these findings and their physiologic importance are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 40 (1983), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The biosynthesis of CNS membrane proteins was studied in cell-free systems containing membrane-bound polysomes (rough endoplasmic reticulum; RER) or free polysomes from rat forebrain. In previous studies of CNS membrane proteins using two-dimensional gel electrophoretic analysis, five proteins (mol. wt.-pI: 75K 5.4, 68K 5.6, 61K 5.1, 58K 5.1, and 36K 5.6) were found in ceil membrane fractions including preparations enriched in RER, smooth endoplasmic reticulum, and plasma membranes. One of these proteins, 68K 5.6, was also present in cytosol and comigrated with a microtubule-associated protein. In our present study, cell-free systems containing RER were found to synthesize the 75K 5.4, 61K 5.1, and 58K 5.1 proteins. A protein, 34K 5.65, similar (but not identical) to the 36K 5.6 protein was also synthesized. After cell-free synthesis, the 75K 5.4 and 58K 5.1 proteins could be purified by concanavalin A affinity chromatography. Of the five common membrane proteins previously identified, only the 68K 5.6 protein was synthesized by the free polysome population. The free polysomes were also found to synthesize cyclic AMP binding proteins at 48K and 54K, known from previous studies to be present in both cytosol and plasma membrane fractions in mammalian brain tissue. In conclusion, RER synthesized proteins found exclusively in CNS membrane fractions, whereas free polysomes synthesized those proteins found in both soluble and membrane compartments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 39 (1982), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The proteins of membrane and cytosol fractions from frozen human postmortem brain were analyzed by two-dimensional gel electrophoresis (isoelectric range: 5.1–6.0) and both Coomassie-blue and ammoniacal silver staining. Cytosol preparations were analyzed from six different postmortem brains from patients with various neurologic diagnoses and immediate causes of death. Intervals between death and brain freezing (−70oC) ranged from 2 to 20 h. The vast majority of proteins detected in these cytosol fractions had identical molecular weights and isoelectric points in each of six human brains examined. However, in some tissue samples tubulin was either quantitatively decreased or undetectable. The possibility that this partial or complete depletion of tubulin was related to postmortem interval and/or brain freezing was studied using rat forebrain tissue. Rat brain incubated at room temperature for up to 24 h did not reproduce the changes seen in the region of human cytosol tubulin. However, other changes seen in the two-dimensional electrophoretic pattern of rat cytosol proteins did relate to postmortem interval, brain freezing, or both. Rough endoplasmic reticulum (RER) and smooth endoplasmic reticulum were prepared from three human brains, with highly reproducible two-dimensional patterns. Protein analysis of these membrane fractions revealed that human RER contained significant amounts of tubulin, in contrast to rat RER which contained no detectable tubulin. This discrepancy was elucidated by allowing rat brains to remain at room temperature for 24 h before freezing; gels of rat RER prepared from this tissue showed that tubulin subunits were present.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 36 (1981), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Studies were undertaken to determine whether there exist variations among the translation products of polysomes from different brains of animals of the same strain. Polysomes were prepared from individual rat cortices and translated in a reticulocyte protein-synthesizing system containing rabbit reticulocyte factors and l-[35S]methionine; the resulting radioactive proteins were analyzed by two-dimensional polyacrylamide gel electrophoresis autoradiography. Comparison of the autoradiographs revealed that two acidic proteins, A and B, of apparent 54,000 M. W. occur as three phenotypes: A only, B only, or A plus B. These proteins were not detectable by Coomassie brilliant blue staining of two-dimensional electrophoretograms of brain protein preparations. Messenger RNA was extracted from pooled cortices and translated in a wheat germ extract, and both A and B proteins were detected among the products of translation. Cyclic AMP affinity chromatography of the translation products of cortical polysomes showed that both A and B proteins bind to cyclic AMP. Our data are consistent with the conclusion that there are qualitative differences in the polysome translation products that bind to cyclic AMP among individual cortices of rats of the same strain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 36 (1981), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Messenger RNA (mRNA) was extracted from human postmortem brain tissue by alkaline phenol extraction of polysomes followed by oligo (dT)-cellulose chromatography. The mRNA preparations stimulated protein synthesis in a cell-free system containing wheat germ homogenate. The products of protein synthesis were analyzed by one- and two-dimensional gel electrophoresis. These analyses indicated that numerous polypeptides, including tubulin subunits and actin isomers, were synthesized by the human mRNA. The molecular weight range of polypeptides synthesized by human mRNA fractions from two brain specimens were identical, and analysis by two-dimensional gel electrophoresis indicated qualitatively similar products. The yield of mRNA extracted per gram of human tissue was less than the yield obtained with rat forebrains from animals sacrificed immediately before brain removal and mRNA purification. A decrease in the amount of polysomes isolated from human tissue relative to rat brain tissue was a major factor contributing to the low yield. The molecular weight distribution of polypeptides synthesized by human and rat brain mRNA fractions in wheat germ homogenate was similar; thus, there was no indication for selective breakdown or inactivation of high molecular weight mRNA species in the human tissue. Our studies indicate that it is possible to utilize postmortem tissue for molecular biological investigations of human brain mRNA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Polysomes were prepared from human brain tissue 2-6 h postmortem; the polysomes were active in a cell-free protein synthesis system containing rabbit reticulocyte factors. Protein synthesis was totally dependent upon added MgCl2, ATP, the reticulocyte factor fraction, and the human polysome fraction. Human brain proteins synthesized in the presence of L-[35S]methionine were analyzed by one- and two-dimensional polyacrylamide gel electrophoresis. Over 250 proteins were synthesized and they extended in size up to 250,000 d; many of the most abundant native human brain proteins were synthesized, including tubulin and actin. It was shown that human brain α and β tubulin and actin isomers synthesized in vitro from human postmortem polysomes have the same apparent molecular weights and isoelectric points as the corresponding proteins synthesized by rat polysomes from fresh cortices. The corresponding tubulin and actin synthesized by human and rat brain polysomes also yield the same radioactive methionine-containing peptides after digestion with Staphylococcus aureus V8 protease. These analyses indicate that postmortem polysomes contain active messenger RNA which can direct the partial and/or complete synthesis of actin and tubulin subunits and other human brain proteins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 39 (1982), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The biosynthesis of brain intermediate filament proteins [neurofilament proteins and glial fibrillary acidic protein (GFA)] was studied with cell-free systems containing either rat spinal cord polysomes (free polysomes or rough microsomes) and rabbit reticulocyte factors or wheat germ homogenate containing spinal cord messenger RNA. The products of translation were isoated by immunoaffinity chromatography and then analyzed by two-dimensional gel electrophoresis (2DGE) followed by fluorography. The free polysome population was found to synthesize two neurofilament proteins (MW 145K, p15.4, and MW 70K, pl 5.3) and three isomers of GFA (α, β, and γ) that differ in isoelectric point. Wheat germ homogenate containing messenger RNA extracted from free cord polysomes synthesized two proteins that comigrated with neurofilament protein standards at 145K 5.4 and 70K 5.3; these proteins were partially purified by neurofilament affinity chromatography. The wheat germ system also synthesized the α, β, and γ isomers of GFA as characterized by immunoaffinity chromatographic purification and comigration with standards in 2DGE analysis. Our data are consistent with the conclusion that synthesis of neurofilament proteins requires multiple messenger RNAs. Also, synthesis of intermediate filament proteins occurs in the free polysome population; detectable amounts of these proteins were not synthcsized by the rough microsomes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...