Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: losses of fertilizer N ; 15N-labelled fertilizer ; N fertilizer use efficiency ; soil organic matter ; spring barley
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract An experiment with 15N-labelled fertilizer was superimposed on the Rothamsted Hoosfield Spring Barley Experiment, started in 1852. Labelled 15NH4 15NO3 was applied in spring at (nominal) rates of 0, 48, 96 and 144 kg N ha-1. The labelled fertilizer was applied to microplots located within four treatments of the original experiment: that receiving farmyard manure (FYM) annually, that receiving inorganic nutrients (PK) annually and to two that were deficient in nutrients: applications were made in two successive years, but to different areas within these original treatments. Maximum yields in 1986 (7.1 t grain ha-1) were a little greater than in 1987. In 1987, microplots on the FYM and PK treatments gave similar yields, provided enough fertilizer N was applied, but in 1986 yields on the PK treatment were always less than those on the FYM treatment, no matter how much fertilizer N was applied. In plots with adequate crop nutrients, about 51% of the labelled N was present in above-ground crop and weed at harvest, about 30% remained in the top 70 cm of soil (mostly in the 0–23 cm layer) and about 19% was unaccounted for, all irrespective of the rate of N application and of the quantity of inorganic N in the soil at the time of application. Less than 4% of the added fertilizer N was present in inorganic form in the soil at harvest, confirming results from comparable experiments with autumn-sown cereals in south-east England. Thus, in this experiment there is no evidence that a spring-sown cereal is more likely to leave unused fertilizer in the soil than an autumn-sown one. With trace applications (ca. 2 kg N ha-1) more labelled N was retained in the soil and less was in the above-ground crop. Where P and K were deficient, yields were depressed, a smaller proportion of the labelled fertilizer N was present in the above-ground crop at harvest and more remained in the soil. Although the percentage uptake of labelled N was similar across the range of fertilizer N applications, the uptake of total N fell off at the higher N rates, particularly on the FYM treatment. This was reflected in the appearance of a negative Added Nitrogen Interaction (ANI) at the highest rate of application. Fertilizer N blocked the uptake of soil N, particularly from below 23 cm, once the capacity of the crop to take up N was exceeded. Denitrification and leaching were almost certainly insufficient to account for the 19% loss of spring-added N across the whole range of N applications and other loss processes must also have contributed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...