Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1420-9136
    Keywords: Gravity waves ; SKYHI model ; horizontal resolution ; space-time spectra ; Eliassen-Palm flux
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract To examine the effects of horizontal resolution on internal gravity waves simulated by the 40-level GFDL “SKYHI” general circulation model, a comparison is made between the 3° and 1° resolution models during late December. The stratospheric and mesospheric zonal flows in the winter and summer extratropical regions of the 1° model are much weaker and more realistic than the corresponding zonal flows of the 3° model. The weaker flows are consistent with the stronger Eliassen-Palm flux divergence (EPFD). The increase in the magnitude of the EPFD in the winter and summer extratropical mesospheres is due mostly to the increase in the gravity wave vertical momentum flux convergence (VMFC). In the summer extratropical mesosphere, the increase in the resolvable horizontal wavenumbers accounts for most of the increase in the gravity wave VMFC. In the winter extratropical mesosphere, the increase of VMFC associated with large-scale eastward moving components also accounts for part of the increase in the gravity wave VMFC. The gravity waves in the summer and winter mesosphere of the 1° model are associated with a broader frequency-spectral distribution, resulting in a more sporadic time-distribution of their VMFC. This broadening is due not only to the increase in resolvable horizontal wavenumbers but also occurs in the large-scale components owing to wave-wave interactions. It was found that the phase velocity and frequency of resolvable small-scale gravity waves are severely underestimated by finite difference approximations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...