Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-904X
    Keywords: triamcinolone acetonide ; lung instillation ; lung targeting ; ex-vivo receptor binding ; corticosteroids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Triamcinolone acetonide (TA, 22 µg) was given to rats by intravenous (IV) injection or intratracheal (IT) instillation. Free glucocorticoid receptors were monitored over time in liver and lung using an ex-vivo receptor binding technique. After IV administration of a TA solution, the reduction of free receptors over time was very similar in lung and liver (AUCLung = 280 ± 47 %*h; AUCLiver = 320 ± 76 %*h). Intratracheal instillation of the same solution produced time profiles which mirrored those of IV injection (AUCLung = 260 ± 41 %*h; AUCLiver = 330 ± 50 %*h). The lack of lung targeting was also reflected in the failure to show any significant difference in the pulmonary targeting factor T (AUCLung/AUCLiver) between IV (T = 0.84 ± 0.18) and IT (T = 0.78 ± 0.03) administration. In contrast, a certain degree of lung specificity was observed after IT instillation of a glucocorticoid suspension (22 µg; AUCLung = 160 ± 135 %*h; AUCLiver = 65 ± 91 %*h, T = 2.3 ± 0.5) as indicated by significant differences in T between IV injection and IT instillation (p = 0.038). The method presented provides a means of simultaneously assessing pulmonary and systemic effects after different forms and routes of administration and might be of value in further studying multiple aspects of inhalation glucocorticoid therapy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-904X
    Keywords: triamcinolone acetonide ; pulmonary targeting ; liposomes ; glucocorticoid receptors ; sustained release
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. To explore the use of triamcinolone acetonide phosphate liposomes as a pulmonary targeted drug delivery system. Methods. Triamcinolone acetonide phosphate liposomes composed of 1,2-distearoyl phosphatidylcholine and 1,2-distearoyl phosphatidyl glycerol and triamcinolone acetonide 21-phosphate dipotassium salt were prepared by dispersion and extruded through polycarbonate membranes. Encapsulation efficiency and in vitro stability at 37°C were assessed after size exclusion chromatography. TAP liposomes (TAP-lip) or TAP in solution (TAP-sol) were delivered to rats either by intratracheal instillation (IT) or intravenous (IV) administration. Pulmonary targeting was assessed by simultaneous monitoring of glucocorticoid receptor occupancy over time in lung (local organ) and liver (systemic organ) using an ex vivo receptor binding assay as a pharmacodynamic measure of glucocorticoid action. Results. In vitro studies in different fluids over 24 hours, showed that more than 75% of the TAP remained encapsulated in liposomes. Cumulative pulmonary effects after IT administration of TAP-lip were 1.6 times higher than liver receptor occupancy. In contrast, there was no difference in the pulmonary and hepatic receptor occupancy time profiles when TAP was administered intratracheally as a solution. No preferential lung targeting was observed when TAP-lip was administered IV. As indicated by the mean effect times, lung receptor occupancy was sustained only when TAP-lip was administered IT. Conclusions. Intratracheal administration of TAP-lip provided sustained receptor occupancy, and increased pulmonary targeting which was superior to IT administration of TAP-sol or IV administration of TAP-lip. The use of liposomes may represent a valuable approach to optimize sustained delivery of glucocorticoids to the lungs via topical administration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-904X
    Keywords: dose ; release rate ; pulmonary targeting ; liposomes ; glucocorticoid receptors ; sustained release ; triamcinolone acetonide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. To demonstrate the importance of dose and drug release rate for pulmonary targeting of inhaled glucocorticoids using an animal model of intrapulmonary drug deposition. Methods. Liposomes composed of 1,2-distearoyl phosphatidylcholine (DSPC), 1,2-distearoyl phosphatidylglycerol (DSPG) and triamcinolone acetonide phosphate (TAP) or liposomes containing triamcinolone acetonide (TA) were prepared by a mechanical dispersion method followed by extrusion through polycarbonate membranes. Encapsulation efficiency was assessed after size exclusion gel chromatography by reverse phase HPLC. The effect of liposome size (200 nm and 800 nm) on the release kinetics of water-soluble encapsulated material was determined in vitro at 37°C using 6-carboxyfluorescein as a marker and Triton X-100 (0.03%) as a leakage inducer. To investigate the relationship between drug release and pulmonary targeting, 100 μg/kg of TAP in 800 nm liposomes was delivered to male rats by intratracheal instillation (IT) and the results compared to data for 100 μg/kg TA liposomes (recently shown to exhibit a rapid drug release under sink conditions) and to previous studies reported for an equal dose of TAP in solution and TAP in 200 nm (1). Pulmonary targeting was assessed by simultaneously monitoring glucocorticoid receptor occupancy over time in lung and liver using an ex vivo receptor binding assay as a pharmacodynamic measure of glucocorticoid action. To assess the effect of dose on pulmonary targeting experiments were performed using 2.5, 7.5, 25, 100, and 450 μg/kg of TAP in 800 nm liposomes. Results. The in vitro efflux of 6-carboxyfluorescein from (DSPC:DSPG) liposomes after exposure to Triton-X was biexponential. The terminal half-lives of 3.7 h and 9.0 h for the 200 nm and 800 nm liposomes, respectively, demonstrated that larger liposomes promote slower release of encapsulated water-soluble solute while previous results already indicated that encapsulation of lipophilic TA does not result in sustained release. Pulmonary targeting, defined as the difference between cumulative lung and liver receptor occupancies was most pronounced for the 800 nm liposomes (370%*h), followed by the 200 nm preparation (150%*h). No targeting was observed for TAP in solution (30%*h) or the rapid releasing TA liposome preparation. Correspondingly, the mean pulmonary effect time (MET) increased from 2.4−3.0 hr for TA liposomes or TAP in solution to 5.7 h and 〉6.2 h for TAP in 200 nm and in 800 nm liposomes, respectively. Escalating doses of TAP encapsulated in 800 nm liposomes revealed a distinct bell shaped relationship between the TAP dose and pulmonary targeting with a maximum occurring at 100 μg/kg (370%*h). Conclusions. The in vivo data presented here confirm that pulmonary residence time and dose affect the extent of lung targeting of glucocorticoids delivered via the lung.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...