Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0568
    Keywords: Spinal ganglion ; Satellite cell ; Plasma membrane ; Orthogonal particle arrays ; Alkaline phosphatase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The plasmalemmal structure of satellite cells in the lumbar spinal ganglia of rat was examined by freeze-fracture and by a cytochemical method for the demonstration of alkaline phosphatase activity. Plasma membranes of satellite cells are the only ones in the ganglia to contain, in addition to globular intramembrane particles, orthogonal arrays of particles 6–7 nm in diameter. The arrays are most concentrated in the portions of the membranes contacting the basal lamina, or outer membranes; they decrease considerably in number in lateral membranes, and are rare in the membrane regions adjacent to the neuronal perikaryon, or inner membranes. Such gradual decrease in array density in satellite cells suggests regional differences of plasma membrane properties within the same cell. Alkaline phosphatase, which was chosen as a cytochemical marker for membrane activity because of its relation to transport function, localizes to inner and lateral membranes, and not to outer membranes of satellite cells. The absence of correlation between localization of orthogonal arrays and such enzymatic activity suggests that the membranes provided with many arrays possess some characteristics different from other membranes that may exclude transport activity. The possible significance of orthogonal arrays and their close association with the basal lamina are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We previously reported that myelin-associated oligodendrocytic basic protein (MOBP) was abundantly expressed in the central nervous system (CNS) myelin, and shared several characteristics with myelin basic protein (MBP). In particular, a cluster of positively charged amino acids was considered to facilitate compaction of the cytoplasmic face of the myelin sheath, as in the case of MBP. However, the contribution of MOBP in forming and maintaining the myelin sheath still remains unclear. Recent investigations showed that one isoform of MOBP was expressed in the embryo prior to myelination, and MOBP isoforms were colocalized with the microtubular network and nucleus in vitro. To explore the role of MOBP in vivo, we generated MOBP-deficient mice and analysed the CNS myelin. Surprisingly, the compact myelin was formed, however, the myelin from MOBP-deficient mice exposed to hexachlorophene, a known dysmyelinating agent, showed widening of the major dense lines. These results suggest that MOBP is not essential for myelin formation, but reinforces the apposition of the cytoplasmic faces of the myelin sheath. A striking phenotype of MOBP-deficient mice was the presence of the straight ‘condensed' radial component. This component has been described as a tight junction-like complex running radially and zig-zag through the CNS myelin sheath between inner and outer mesaxons. These results suggest that MOBP is essential for normal arrangement of the radial component.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Myelination in the peripheral nervous system is considered to increase the phosphorylation level of neurofilament proteins in the axon, resulting in an increase in axonal calibre. To understand the relationship between myelination and neurofilament proteins in axons, we examined jimpy mutant mice with a point mutation in the proteolipid protein gene and dysmyelination in the central nervous system. The jimpy mice exhibited a characteristic similarity in neurofilament nature to the myelin-deficient mice in the peripheral nervous system reported previously. The following novel results were obtained in the jimpy mice: dysmyelinated axons, in which the amount of non-phosphorylated neurofilament-H was drastically increased without a significant reduction of the phosphorylated form, compared with the control myelinated axons, did not suffer any decrease in their diameters. Expression levels of all neurofilament subunit proteins and their mRNAs were enhanced in the central nervous system tissue. Because the above biochemical data were obtained from the cytoskeletal fraction, at least some of the increased neurofilament-H and -M proteins appeared to be coassembled into neurofilaments but remained non-phosphorylated. Axonal neurofilaments of the jimpy were, probably due to this abnormal stoichiometry and phosphorylation state in neurofilaments, more compact and random in alignment with less prominent cross-bridges than those of the control, providing possible evidence for disturbing the axonal transport of other organelles. These results suggest that myelination regulates both the expression and phosphorylation of neurofilament proteins, and is essential for the cytoplasmic organization of myelinated axons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Cathepsin E is a major nonlysosomal, intracellular aspartic proteinase that localizes in various cellular compartments such as the plasma membrane, endosome-like organelles, and the endoplasmic reticulum (ER). To learn the segregation mechanisms of cathepsin E into its appropriate cellular destinations, the present studies were initiated to define the biosynthesis, processing, and intracellular localization as well as the site of proteolytic maturation of the enzyme in primary cultures of rat brain microglia. Immunohistochemical and immunoblot analyses revealed that cathepsin E was the most abundant in microglia among various brain cell types, where the enzyme existed predominantly as the mature enzyme. Immunoelectron microscopy studies showed the presence of the enzyme predominantly in the endosome-like vacuoles and partly in the vesicles located in the trans-Golgi area and the lumen of ER. In the primary cultured microglial cells labeled with [35S]methionine, 〉95% of labeled cathepsin E were represented by a 46-kDa polypeptide (reduced form) after a 30-min pulse. Most of it was proteolytically processed via a 44-kDa intermediate to a 42-kDa mature form within 4 h of chase. This processing was completely inhibited by bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase. Brefeldin A, a blocker for the traffic of secretory proteins from the ER to the Golgi complex, also inhibited the processing of procathepsin E and enhanced its degradation. Procathepsin E, after pulse-labeling, showed complete susceptibility to endoglycosidase H, whereas the mature enzyme almost acquired resistance to endoglycosidases H as well as F. The present studies provide the first evidence that cathepsin E in microglia is first synthesized as the inactive precursor bearing high-mannose oligosaccharides and processed to the active mature enzyme with complex-type oligosaccharides via the intermediate form and that the final proteolytic maturation step occurs in endosome-like acidic compartments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 11 (1982), S. 363-379 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The permeability of intercellular junctions in specialized ependymal cells in the rat subcommissural organ (SCO) has been studied ultrastructurally by freeze-fracturing and tracer experiments with horseradish peroxidase (HRP). In addition to normal smooth membrane, areas which could be classified as a leaky tight junction are found within the ependymal junctional region. This consists of only one or two relatively continuous strands but with interruptions in the apical portion. Some strands are perpendicular to the apical membrane surface and often form hairpin-like bends in the basal portion of the junction. The junctional region also shows areas with no strands but only a rippled membrane structure which may be equivalent to very close appositions without fusion of adjacent ependymal cell membranes. The relative proportions of normal smooth membrane, strands and rippled structure in the junctional region is approximately 3∶4∶6 including two parts overlapping of the strands and rippled structure. Intraventricularly infused HRP passes through many junctions but is occasionally stopped, leaving unstained intercellular spaces of various lengths between membrane fusions of tight junctions. Even when it is stopped, the intercellular space below the junction is densely stained by the enzyme. Orthogonal arrays of intramembrane particles are found to be distributed on the basal and lateral cell membranes below the junctional region in the SCO ependyma.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Morphological investigations on the permeability of intercellular junctions between ependymal cells and between capillary endothelial cells in the subcommissural organ (SCO) of the guinea pig have been carried out using freeze-fracturing and tracer experiments with horseradish peroxidase (HRP). The ependymal junction reveals a moderately developed network of tight junctional strands surrounding the tall ependymal cell. The apical portion of this junctional network tends to form nearly complete strands, whereas the basal portion usually shows irregular, fragmented strands often arranged in hairpin-like structures. The passage of intraventricularly infused HRP is blocked, leaving unstained areas, at the level of membrane fusions. At the same time the lateral intercellular space below the junction is densely stained, probably due to invasion from the basal side through adjacent ordinary ependymal junctions. The SCO capillary endothelium shows a high distribution density of pinocytotic vesicles. Vesicular transport of intravascularly injected HRP is observed, but no HRP penetration occurs through the endothelial junction. The active participation of vesicles in tracer movement is shown in preparations fixed before administration of HRP. Extravasation of this tracer is indicated to some degree in the SCO capillary, but permeability here appears to be comparable to that of ordinary brain capillaries. Accordingly, the SCO ependymal tight junction seems to form an effective barrier not to blood plasma or similar materials but to apically secreted substances, preventing them from spreading back into SCO intercellular spaces.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The cytoskeletal system in rat subpial astrocytes and the relationship between astrocytic plasma membrane and basal lamina or cytoplasmic components were examined with a quick-freeze deep-etch technique, mainly using chemically fixed tissues. Attention was focused on the way intramembrane particles (IMPs), particularly orthogonal arrays, are organized in the membranes and related to extramembrane components. The basal lamina was composed of a sheet-like network of strands (4–9 nm thick), some, which we have called ‘trabecular’ strands, extending through the lamina lucida to touch the astrocytic membrane at irregular intervals. The trabecular strands usually formed a bulbous structure where they touched the membrane, but sometimes appeared to intrude directly into the external lipid layer. The orthogonal arrays did not extend to the outer true surface, and no special structure was detectable in association with them. Small spherical protrusions (7–9 nm in diameter), related to neither the trabecular strands nor the arrays, were observed in the outer surface. Judging from their size and distribution, these are probably tops of tall globular IMPs. In the inner or cytoplasmic true surface, protrusions were relatively numerous; some were large, 15–20 nm in diameter, while others were small (8–10 nm). Some of the small protrusions were identified as transmembrane components. Although protrusions were more conspicuous in the inner than in the outer surface, none of them provided images related or similar to the orthogonal arrays. Some protrusions in the inner surface were connected with thin (4–5 nm) or thick (∼ 10nm) filaments constituting the underlying network. The thin filaments were also anchored to the intermediate filaments which lay parallel with the astrocytic membranes. In the cytoplasm, the intermediate filaments were firmly packed to form bundles. Because the orthogonal arrays are probably embedded within the astrocytic membrane, they may not serve as a transmembrane channel but rather contribute to some stabilizing function for the membrane.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 13 (1984), S. 727-742 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The structural machinery contributing to the blood-brain barrier in elasmobranchs has been examined mainly using freeze-fracture techniques. Capillary endothelial cells, which show local aggregations of pinocytotic vesicles and infrequent fenestrations, are connected by poorly developed tight junctions. Astrocytic processes investing the capillary are linked by well-developed tight junctions between lateral membranes immediately beneath the perivascular space. The tight junctions consist of continuous strands of multiple layers coursing circumferentially around the astrocytic processes parallel to one another as well as to the perivascular space. The presence of intramembrane particles (IMPs) within E-face grooves may result in discontinuities in IMP rows on the P-face. Thus, in compensation for the capillary endothelium, perivascular astrocytes constitute the morphological site of the blood-brain barrier in elasmobranchs. Continuous strands of tight junctions are also detected between astrocytic processes forming the glia limitans at the brain surface. These may act as a barrier between meningeal connective tissue and brain parenchyma. Astrocytic membranes have numerous IMPs of 8–9 run in diameter on their P-faces. These IMPs are uniformly distributed so that astrocytic membranes are easily distinguished from neuronal membranes even in the neuropil. Ependymal cells also have numerous IMPs in all their membrane domains. Orthogonal arrays are not detected in either astrocytic or ependymal plasma membranes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 13 (1984), S. 431-448 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Astrocytic membranes contacting the basal lamina are found to be less affected by filipin than subjacent lateral membranes. An abrupt change in density of lesions induced by filipin creates a border between subpial and lateral membranes at the glia limitans. This means that orthogonal array-crowded membranes may contain relatively less cholesterol than other astrocytic membrane domains. Another possible explanation for filipin resistance is also considered in relation to aggregated intramembrane particles of orthogonal arrays and/or membrane-associated filamentous elements including the basal lamina. The polygonal particle junction between astrocytic processes located just below the subpial membrane is strongly resistant to the action of filipin. Both membrane-associated enzymes, i.e. alkaline phosphatase (AlkPase) and Na+,K+-ATPase are commonly detected only in perivascular astrocytic membranes, and not in subpial membranes, suggesting a regional differentiation in function of astrocytic membranes. There are variations in the reactive deposits particularly of those for Na+,K+-ATPase. It is apparent that the distribution polarity of orthogonal arrays is not connected with that of either AlkPase or Na+,K+-ATPase. Judging from the relative resistance to filipin, however, astrocytes throughout the C.N.S., having domains specialized with orthogonal arrays, may possess a unique stabilizing mechanism for their own membranes contacting the basal lamina.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 206 (1980), S. 303-318 
    ISSN: 1432-0878
    Keywords: Area postrema, rat ; Ependyma ; Cyst ; Circumventricular organs ; Electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Peculiar cells forming cysts were observed in the area postrema and sometimes also in the choroid plexus and the tela chorioidea near the area postrema, and were studied in detail by electron microscopy. The cytological features of the cyst cell and its junctional relationship to neighboring cells imply that cyst cells are derived from ependymal and choroid epithelial cells. The cyst cells usually contact directly the perivascular spaces of postremal, choroidal or pial capillaries, where the cytoplasm is often considerably attenuated. The cystic lumen is commonly filled with a flocculent material. The limiting membrane of the cystic lumen, which frequently bears cilia and microvilli, has the same thickness as the surface cell membrane. In many cases, the cyst is surrounded by the cytoplasm of a single cell. In some cases, however, two cells participate in the formation of the cyst, although one is only a slender process and joined by a zonula occludens with the main cyst cell. Horseradish peroxidase (HRP) injected into the cerebrospinal fluid (CSF) space failed to enter the cystic lumen. A possible significance of the cyst in relation to the CSF and blood circulation was considered.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...