Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 73 (1951), S. 5931-5931 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 73 (1951), S. 2969-2970 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The late Proterozoic Adelaide Geosyncline, along with overlying Cambrian strata, comprises a thick sequence of sediments and sparse volcanics which accumulated in a major rift and passive margin setting. During late syn-rift or early post-rift phases, large volumes of terrigenous and carbonate sediments of the late Proterozoic Umberatana and Wilpena Groups and Cambrian Hawker Group filled the rift. Submarine canyon development was related to at least four of these depositional cycles, the most notable of which resulted in incision and subsequent filling of the major (several kilometres in width and up to 1.5 km deep) submarine canyons by the Wonoka Formation.The Wonoka Formation canyons are not obviously fault controlled. They are interpreted to have been eroded by turbidity currents during a relative low-stand of sea-level. They were subsequently filled by a fining-upwards suite of sediments which reflects subsequent relative rise of sea-level and carbonate platform development. Ultimately the canyon complex was buried by north-westerly progradation of overlying fluvial and slope sequences (Billy Springs Beds and possibly correlative upper Pound Subgroup). It is considered likely that more distal elements of this prograding clastic wedge provided the necessary material for canyon erosion, prior to canyon filling and ultimate burial by what may have been elements of the same depositional cycle.It is considered possible that the series of isolated outcrops of canyon cross-sections within the Wonoka Formation are sections of a single canyon thalweg developed within a considerably broader zone of slope degradation. If this interpretation is correct, then the gorge-like Patsy Springs Canyon lies in more proximal regions of the basin-slope, whereas 40 km to the north-east the lower slope is cut by the Fortress Hill Canyon Complex. Palaeocurrent analyses of channel-fill turbidites within the canyons imply that the Fortress Hill Complex is in fact the outcropping western edge of a sinuous, incised canyon thalweg.The Wonoka Formation canyons, containing basal sedimentary breccias but only minor conglomerates, are considered typical of passive margin canyon development. They are contrasted with the generally highly conglomeratic channel-fills observed in outcropping Tertiary and Cretaceous examples of active margin canyons and upper fan valleys.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 36 (1989), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A significant aspect of Late Proterozoic sedimentation in the Adelaide Geosyncline, South Australia, is the presence of kilometre-deep erosional incisions which have been termed canyons. These structures were formerly described to be of submarine origin, cut and filled in an inferred basin-slope setting by subaqueous processes. Subsequent detailed research, particularly on a specific incision known as Patsy Springs Canyon, indicates that sedimentary structures within some of the canyon-filling sediments are indicative of deposition above fair weather wave base. In addition, an unusual carbonate unit, which is observed to veneer upper portions of canyon shoulders and to contribute to carbonate breccias interbedded with canyon-fill, has a stable isotope signature which may imply a non-marine origin. The presence of the carbonate veneer, where it is in situ, suggests that at least upper portions of the canyons could have been emergent during the canyon-filling phase. Considering these observations, and combining them with regional stratigraphical relationships, an alternative model for canyon genesis is proposed involving subaerial erosion and subsequent filling by coastal onlap. Such a model requires base-level changes of the order of 1 km, in order to account for observed canyon cutting and filling. Vertical movements associated with halokinesis, or thermally-induced uplift of the order of 1 km, could have resulted in the observed erosional events. Alternatively, a Messinian-style evaporitic lowering of base-level is currently receiving serious attention. With present knowledge this mechanism most satisfactorily explains all observations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...